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To comprehend interconnected systems across the social and natural sciences, researchers have
developed many powerful methods to identify functional modules. For example, with interaction data
aggregated into a single network layer, flow-based methods have proven useful for identifying modular
dynamics in weighted and directed networks that capture constraints on flow processes. However, many
interconnected systems consist of agents or components that exhibit multiple layers of interactions,
possibly from several different processes. Inevitably, representing this intricate network of networks as a
single aggregated network leads to information loss and may obscure the actual organization. Here,
we propose a method based on a compression of network flows that can identify modular flows both
within and across layers in nonaggregated multilayer networks. Our numerical experiments on synthetic
multilayer networks, with some layers originating from the same interaction process, show that the analysis
fails in aggregated networks or when treating the layers separately, whereas the multilayer method can
accurately identify modules across layers that originate from the same interaction process. We capitalize on
our findings and reveal the community structure of two multilayer collaboration networks with topics as
layers: scientists affiliated with the Pierre Auger Observatory and scientists publishing works on networks
on the arXiv. Compared to conventional aggregated methods, the multilayer method uncovers connected
topics and reveals smaller modules with more overlap that better capture the actual organization.
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I. POPULAR SUMMARY

The convention to represent different types of inter-
actions in a system with a single type of link no longer is
the panacea of network science. Temporal-, memory-, and
multiplex-network representations have proven necessary
to capture essential structural information in social and
biological systems. Many useful tools of conventional
network science have quickly been generalized to multi-
layer networks, but generalizing community-detection
algorithms has turned out to be a twofold challenge:
What is a community in a multilayer network and how
can it be identified? We demonstrate that the information-
theoretic and flow-based community-detection method
known as the map equation provides an effective answer
to both questions. We illustrate the mathematical machinery
and demonstrate with an analysis of synthetic and real
networks.

II. INTRODUCTION

The multifaceted relationships between numerous com-
ponents in social and biological systems make them
inherently complex to analyze [1,2]. Data about these
interactions have become increasingly available, and net-
work analysis has emerged as an essential tool for studying
their function [3–5]. For large networks, detailed modeling
of individual components and their interactions is unfea-
sible, and researchers instead seek to simplify and highlight
important large-scale functional structures in the networks.
Depending on the system under study and the research
question at hand, researchers use methods that operate
either on the plain topology of the network itself [6,7] or, to
capture flow processes through the real system, on dynam-
ics modeled on the network [8,9]. In any case, an important
objective is to detect so-called communities [10], topo-
logical groups of nodes with higher internal than external
density of links compared to null models [11–13] or,
alternatively, modules that capture flows for a relatively
long time [14–16].
However, community-detection methods generally

assume that a single type of static link, weighted and directed
at best, can account for all types of interactions between
nodes in the network. This assumption oversimplifies the
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multifaceted nature of relationships in real systems with
important consequences; see Refs. [17,18] for a review.
Aggregating multiple types of relationships into a single
weighted and directed network can distort both the topology
of the network and the dynamics on the network [19].
Take social relationships as an example, where the way an
individual interactswith her relatives, friends, and colleagues
may depend on location, time, or means of interaction. Is she
at home or at the office? Is it a weekday or weekend? Is she
communicating by phone or by Facebook? If all contact
events are aggregated into a single network layer, important
temporal [19,20] and structural [21] information is inevitably
lost. On the other hand, if all different modes of interactions
are treated independently in separate network layers,
important interplay between the layers is lost. To capture
different types of interactions between nodes, researchers
have recently introduced multilayer networks together with
generalized network methods [22–28], including a gener-
alization of the objective function modularity, to identify
groups in multilayer networks [22]. While the generalized
null models of modularity are based on Laplacian dynamics
[22], they nevertheless favor topological groups with
high link density [29], both within and between network
layers [30].

III. MODULES IN MULTILAYER NETWORKS:
A FLOW APPROACH

To identify modular flows on multilayer networks, we
introduce a method based on compression of network
flows. The information-theoretic method generalizes the
so-called map equation [15] for networks with memory
[19] to take advantage of modular flows in multilayer
networks. The framework generalizes straightforwardly
because the information-theoretic machinery remains the
same and only the non-Markovian flow model changes,
with memory of the present layer rather than of the previous
step. This approach therefore suggests a natural concept
of communities in multilayer networks as groups of nodes
that capture flows within and across layers for a relatively
long time.
We begin by describing how we model the dynamics and

then introduce the multiplex map equation. We measure the
performance on benchmark networks and contrast with
results obtained with the generalization of modularity.
Finally, we analyze the modular flow dynamics on two
multilayer collaboration networks. Moreover, we have
integrated the method in the Infomap software package,
which is available online for anyone to use [31].

A. Flow dynamics on multilayer networks

A multilayer network is an efficient representation of a
connected system of agents that may interact in different
roles, at different times, or by different means. We represent
each agent with a physical node, refer to the different means

of interaction as different modes, and represent each mode
with a network layer. Figure 1 illustrates a multilayer
network with four physical nodes and three network layers.
We use Latin letters to enumerate the physical nodes, Greek
letters to enumerate the network layers, and pairs of Latin
and Greek letters to identify node-layer tuples [17]. The
node-layer tuples correspond to physical nodes in specific
network layers, which we refer to in the following as state
nodes [see Figs. 1(c)–1(d)]. Sometimes empirical data
allow us to assign weights to both intralayer and interlayer
links between state nodes. In such interconnected networks,
we have complete information to model dynamics with
a random walker that follows links proportional to their
weights within and between network layers. Accordingly,
movements between state nodes within each layer are
Markovian, and movements between physical nodes across
layers are non-Markovian.

(b)

(d)(c)

(a) 

FIG. 1. Modular flow on the benchmark multilayer network.
(a) A schematic multilayer network with physical nodes i, j, k,
and l, and three layers α, β, and γ in blue, red, and orange,
respectively. The physical nodes in each layer are connected with
intralayer link weights Wα

jk. (b) A random walker on the multi-
layer network moving between the physical nodes in each layer,
twice relaxing the layer constraint and following a link from
the physical node in any layer. (c) The three layers represented
as a multiplex network with physical nodes in black and state
nodes i; α in blue, red, and orange. (d) A random walker on the
multiplex network moving between the state nodes. While the
random walker moves according to the weights between the state
nodes, only the physical nodes are considered to be observables,
as illustrated by the sequence of physical nodes that the random
walker has visited. When the random walker moves along links of
the blue layer, it is trapped in the lower-right triangle. When the
random walker moves along links of the red or orange layer, it is
trapped in the upper-left triangle. As a consequence, the multi-
layer network has two overlapping modules with respect to flow.
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In general, with intralayer adjacency matrix Wβ
ij of layer

β and interlayer adjacency matrix Dαβ
i of physical node i,

the transition probabilities are

Pαβ
ij ¼ Dαβ

i

Sαi

Wβ
ij

sβi
; ð1Þ

where Sαi ¼
P

βD
αβ
i are the interlayer out-strengths and

sβi ¼
P

jW
β
ij are the intralayer out-strengths of node i in

layer α and β, respectively [28]. In practice, however, data
about interlayer link weights are often scarce. In other
words, information about the probability of switching layer
is incomplete.
In the absence of empirical interlayer weights, we use

random walker dynamics with relax rate r to model
movements between layers. In a given step, with proba-
bility 1 − r, the random walker moves according to the
intralayer links of the state node, and with probability r, the
constraint to move in the current layer is relaxed and
the random walker moves along any link of the physical
node. In this way, the random walker switches from
layer α to layer β with probability sβi =S

α
i . These dynamics

are described by the transition probabilities

Pαβ
ij ðrÞ ¼ ð1 − rÞδαβ

Wβ
ij

sβi
þ r

Wβ
ij

Si
; ð2Þ

with Si ¼
P

βs
β
i independent of the layer. [It is worth

noting that Eq. (2) is equivalent to Eq. (1) when Dαβ
i ¼

ð1 − rÞδαβSi þ rsβi and Sαi ¼
P

βs
β
i .] A relaxed step on a

multilayer network resembles a teleportation step in the
PageRank algorithm [8], which allows a random surfer to
move freely to a random website and explore the full
network. However, a relaxed step only frees the constraints
set by the current network layer and allows the random
walker to follow a link from node i to node j in any network
layer (see Fig. 1). Accordingly, changing the relax rate from
0 to 1 modifies the constraints on the random walker from
those that force it to be trapped in disconnected network
layers to those that allow it to move more freely on the
fully aggregated network. In this way, we can model the
important interplay between interconnected network layers.
See the Appendix for details about how we model ergodic
dynamics.

B. Communities in multilayer networks

There are, in principle, many ways to define commun-
ities in multilayer networks [22,32], but the challenge is to
construct an effective framework. The challenge may seem
daunting since there is still debate about how to define
communities in single-layer networks [10], and multilayer
networks are inherently more complex with simultaneous

and nonlinear coupling between the layers. However, by
using the fact that many networks represent constraints on
flow in social and biological systems and that multilayer
networks are just a more complete description of these
constraints, a generalization of flow-based community
detection methods follows straightforwardly.
We begin by illustrating how we identify communities

in a multilayer network. As an example, we use a social
system in which nodes represent individuals and network
layers represent interaction processes associated with
family, friendship, and work relations, respectively. The
constraints on flow in a network layer may give rise to
modules with long flow persistence times. Moreover, and
importantly, the modules in each network layer may or may
not depend on other network layers. For example, if some
friends run a business together, their module in the friend-
ship-relations layer will correlate and interplay with their
module in the work-relations layer, such that they form a
single reinforced module across the two layers. Contrarily,
all members of a family may not work together or even
interact as friends, such that the family module does not
extend across layers. However, if some of the family
members run a business together or interact as friends,
modules may overlap. In other words, identifying modular
flows on multilayer networks captures the fact that indi-
viduals can belong to multiple highly interactive commun-
ities with limited information transfer between, such that
information has long persistence times within communities
that may extend into multiple layers. The schematic multi-
layer network in Fig. 1 illustrates this example. Each layer
has a triangle of connected nodes [Fig. 1(a)] that trap flow
for a long time [Fig. 1(b)]. The red and the orange network
layers interplay more with each other than with the blue
network layer. By representing the multilayer network as a
multiplex network with state nodes [Fig. 1(c)] and analyz-
ing the dynamics of a random walker on the multiplex
network, the community structure with two overlapping
modules appears [Fig. 1(d)]: one module across the red
and orange layers that captures the interplay between these
layers, and a separate module for the blue layer that
captures the distinct dynamics in this layer. In general,
however, not all modules of a layer need to extend across
layers. In the next section, we make this concept of modular
flow in multilayer and interconnected networks precise by
generalizing the map equation.

C. The multiplex map equation

In short, the map equation takes advantage of the duality
in information theory between finding regularities in data
and compressing the data [33,34]. It measures the length
required to communicate dynamics on a network with a
modular description for a given network partition [15].
Therefore, to find the optimal partition, we seek to
minimize the description length over all possible network
partitions. Accordingly, the network partition that gives the
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shortest description length, and compresses the data the
most, also best captures the community structure with
respect to the dynamics on the network.
We now detail the machinery of the map equation and its

natural generalization to multiplex networks. First, here a
modular description means that the coding scheme of the
map equation grants unique names only to the important
structures of the network, the modules. In practice, each
entry to a module is assigned a unique code word, while
each node visit and module exit is assigned a code word
unique only for the particular module. Specifically, one
index codebook maps module entries to code words to
describe the random walker’s movements between mod-
ules, and m module codebooks, one for each module, map
node visits and module exits to code words to describe the
random walker’s movements within modules. Importantly,
the codebooks are independent, allowing short code words
to be reused between them for efficient modular descrip-
tions. Moreover, the code structure with unique code words
in modules and of modules, respectively, is equivalent to
assuming that the dynamics form an independent and
identically distributed process. This equivalence follows
from Shannon’s source-coding theorem [33], which states
that the average description length of an independent and
identically distributed random variable X, with events xi
and probability distribution PðxiÞ, is bounded below by the
Shannon entropy HðXÞ ¼ −PiPðxiÞlog2PðxiÞ. For the
modular description of the random walker on the network,
the events correspond to node visits and module entries and
exits. Accordingly, the average code length of each code-
book is derived from the rate of use of each code word.
Consequently, to take advantage of the duality between
finding regularities and compression, it is not necessary to
derive the code words per se. Instead, the map equation
directly operates on the rates at which a random walker
enters and exits modules and visits nodes in the modules,
and simply measures the average codelength of each
codebook and weights them by how often each one is used.
A simple example illustrates how the machinery works.

In the archetype of a modular network, at most weakly
connected modules correspond to fully connected cliques
of nodes such that a random walker can visit a node
with equal probability from any other node in a clique. In
other words, node visits are independent and identically
distributed. Accordingly, with a module codebook for each
clique, and an index codebook for the rare movements
between the cliques, the compression is optimal. Any
other assignment of nodes to modules would give longer
descriptions because the events would no longer be
independent and identically distributed or because transi-
tions between modules would be more frequent. In fact, for
the clique structure described here, the modular description
even achieves the optimal compression over all possible
codes, which for random walks on networks is given by the
entropy rate of the Markov process obtained by using one

codebook for each node with code words for the neighbors
[33]. But the constraint of using a modular code structure
is necessary for identifying the cliques from optimal
compression. And, importantly, while the compression
no longer achieves the entropy rate of the Markov process,
the machinery nevertheless works for nonclique networks
because the partition that best corresponds to a clique
structure allows for the best modular compression. Or, from
the perspective of the dynamics, maximum compression is
achieved when a group of nodes that capture a random
walker for a relatively long time is assigned to the same
module. In this way, the modular description with unique
code words in modules and of modules, respectively,
allows for optimal coding of modular dynamics.
Since the map equation expresses the description length

in terms of the rates at which a random walker enters and
exits modules and visits nodes in the modules, we now
derive the rates for a multiplex network. Given a partitionM
of state nodes i; α assigned to modules ı ¼ 1; 2;…; m, the
transition rates at which the random walker enters qı↶ and
exits qı↷ each module take the form

qı↶ ¼
X

fi;αg∈ ȷ≠ı;fj;βg∈ ı
qαβij ; ð3Þ

qı↷ ¼
X

fi;αg∈ ı;fj;βg∈ ȷ≠ı
qαβij : ð4Þ

However, the original formulation of the map equation was
developed for conventional Markovian networks with a
single node for each component of the system the network
represents. In other words, for the component represented
by a node, the node must both define the transition
probabilities and constitute the object to be encoded.
Much like in a network with memory with its second-
order Markov model [19], this constraint is relaxed in a
multiplex network. In other words, multiple state nodes of a
single physical node capture the transition probabilities of
the dynamics, but the coding only captures physical node
visits. Therefore, the generalization of the map equation
to multiplex networks is simply about separating objects
for dynamics and coding. Accordingly, all state nodes of a
physical node in a particular module are assigned to a
common code word. In this way, the map equation can
capture the notion of the multiplex network with its rich and
non-Markovian dynamics.
To capture the concept that all state nodes of a physical

node in a particular module are assigned to a common code
word, the code-word lengths are derived from the rates at
which the random walker visits each of the physical nodes
in the module. For module codebook ı, the physical node-
visit rates are

pi∈ ı ¼
X

fi;αg∈ ı
pα
i : ð5Þ
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Moreover, module codebook ı also has a code word for the
exit, derived from the exit rate qı↷ in Eq. (4). We use pı↻ to
denote the sum of these rates and Pı ¼ fpi∈ ı=pı↻g to
denote the normalized probability distribution. Similarly,
the index codebook has code words for module entries. The
code-word lengths are derived from the rates at which the
random walker enters each module, qı↶. We use q↶ to
denote the sum of these rates andQ ¼ fqı↶=q↶g to denote
the normalized probability distribution.
We can now express the description length of a random

walker in terms of the rates at which it enters and exits
modules and visits state nodes of physical nodes in the
modules. With the per-step average description length
LðMÞ of the trajectory of an ergodic random walker on
a multiplex network, the map equation takes the form

LðMÞ ¼ q↶HðQÞ þ
Xm

ı¼1

pı↻HðPıÞ: ð6Þ

This formulation is, on the surface, identical to the
standard formulation of the two-level map equation [15],
with one important distinction: State nodes of a physical
node can be assigned to multiple modules, but if they are
assigned to the same module, they are assigned a common
code word derived from their total visit rate given by
Eq. (5). In colloquial terms in the example above, the
distinction corresponds to a scenario in which colleagues
who are also friends will refer to each individual by a
single name that may be different from what family
members use. The seemingly subtle distinction from
the standard formulation of the map equation for conven-
tional networks makes, as we show in the following
sections, all the difference. The map equation captures
the notion of multiplex networks, and multilayer network
modules will naturally overlap if the dynamics have such
properties.
We have integrated both the two-level and the multilevel

multiplex map equation in the Infomap search algorithm
available online [31], but here we focus on two-level
modular structures, communities.

IV. RESULTS AND DISCUSSION

In this section, we first validate our framework with
performance tests on novel multilayer benchmark networks
and then analyze two inherently multilayer collaboration
networks.

A. Performance tests on multilayer
benchmark networks

To test the performance of the information-theoretic and
flow-based method, we developed multilayer benchmark
networks with modular structure across layers. We fol-
lowed the standard approach and obtained benchmark
networks from a generative model in which nodes are

assigned to communities and the probability of drawing
a link between two nodes depends on their community
assignments [35,36]. While the multiplex map equation
can identify modules that independently span across any
number of layers, here we consider benchmark networks
with community structure in entire layers that either
correlate or not. This more easily tractable scenario
nevertheless highlights salient features of modular flows.
As schematically illustrated in Fig. 1, the scenario corre-
sponds to systems that can be in different modes with
dependent network layers. Using the example from above,
colleagues would also be friends such that the two layers
would have a community structure that is almost the same,
yet different from the community structure associated with
family relations. Such redundant or complementary infor-
mation is common in many social and biological networks
representing systems that can be in different modes as a
whole or slowly change over time [37].
For the mode networks, we first generated T indepen-

dent Lancichinetti-Fortunato-Radicchi (LFR) benchmark
networks [36] for the different modes of the system and
then sampled L network layers from each of the mode
networks. In the first step, each LFR benchmark network
was generated by specifying the degree distribution, the
community sizes, and the number of links within and
between the communities. Within each community, the
links were randomly inserted according to the configu-
ration model [38], and the same model was used to insert
links between the communities. Specifically, we used LFR
benchmark networks with 128 nodes and 4 communities,
each with 32 nodes with average degree 16, and the
fraction of intercommunity links set to 0.05. In the second
step, to sample a link of the mode network once, on
average, we sampled the network layers by including each
link with probability 1=L. Each multilayer benchmark
network thus comprises T × L layers, with T sets of L
dependent layers.
Figure 2 schematically illustrates a multilayer bench-

mark network with T ¼ L ¼ 2. The challenge is to reveal
the community structure of each mode network, simulta-
neously revealing the community structure in each layer
and identifying the mode network from which the layer
was sampled. To make the test realistic, we only provided
the algorithm with the T × L network layers and did not
input any information about the number of mode networks
T or about how or in which order the layers were sampled.
In the small example illustrated in Fig. 2, generalized
modularity [22] correctly identifies the communities in
each layer but fails to identify the communities in the two
original mode networks. Contrarily, the multiplex map
equation, here with relax rate r ¼ 0.15, identifies both the
communities in each layer and the communities in the
mode networks.
The multiplex map equation can accurately identify

multilayer communities. To test the performance more
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systematically, we generated multilayer benchmark net-
works with different numbers of mode networks T
(between 1 and 3) and network layers per mode network
L (between 1 and 7), and we applied the normalized
mutual information (NMI) [39,40] to state nodes (multi-
plex NMI). In this way, we can quantify how well the
method captures the multilayer communities. Figures 3(a)
and 3(b) show the results for relax rate r ¼ 0.15.
Optimization of the multiplex map equation with
Infomap, multiplex Infomap for short, accurately identi-
fies the communities of the original mode networks for up
to 5–6 network layers per mode network. Contrarily, the
standard Infomap applied on each layer separately or on
the supra-adjacency representation of the multilayer net-
work with all state nodes interpreted as physical nodes
[26] only succeeded for one layer per mode network.
Similarly, generalized modularity [22] does not identify
this type of planted community across network layers [see
Fig. 3(d)] because it uses a null model only for intralayer
links and merely a coupling parameter between layers
[22,30]. As a result, merging different communities across
layers always improves the modularity score. For exam-
ple, by measuring the performance on each layer sepa-
rately, by simply averaging the multiplex NMI applied to
each layer separately (average NMI), Fig. 3(d) shows
that generalized modularity, besides optimization and
resolution-limit problems, accurately captures the com-
munities at each layer. Accordingly, as illustrated in
Fig. 2(c), generalized modularity cannot separate depen-
dent communities from independent communities across
layers. In Ref. [45], Fig. S1 shows the corresponding

analysis for Infomap. Also in this test, the multiplex
Infomap gives better results than Infomap applied on each
layer separately because Infomap tends to overestimate
the number of clusters in the sparse network layers. In
other words, multiplex Infomap can use information
across layers for better performance on individual layers.
In any case, only by acknowledging the multiplex nature
of the benchmark networks is it possible to accurately
identify their multilayer communities.
The results for multiplex Infomap are only weakly

dependent on the relax rate [see Fig. 3(c)], although the
exact range depends on the relative constraints on flow
manifested in network layers of the same and different
mode networks (see Figs. S1 and S2 in Ref. [45]). When
nothing else is stated, we use r ¼ 0.15 throughout our
analysis. With this relax rate, the random walker stays in
the same network layer for about six steps.
Overall, we were not able to recover multilayer com-

munities by treating the multilayer network as one large
network, as multiple disconnected networks, or as multiple
networks connected with a coupling parameter without a
proper null model. We conclude that the key discriminating
factor is the map equation’s ability to capture the important
notion of multiplex networks that sets of state nodes across
layers represent the very same physical objects.

(a) (b)

(c) (d)

FIG. 3. Performance test on multilayer benchmark networks.
(a,b) Performance of multiplex Infomap (Multiplex) compared
with Infomap applied to the expanded network with state nodes
interpreted as physical nodes (Expanded) and to each network
layer separately (Single) as a function of number of network
layers for 1 and 3 mode networks, respectively. We used relax rate
r ¼ 0.15 and quantified the performance by the NMI between the
planted and obtained partitions of state nodes. (c) Performance of
multiplex Infomap as a function of the relax rate r. (d) Perfor-
mance of generalized modularity optimization for T ¼ L ¼ 3 as a
function of the interlayer coupling DX, measured both as the
NMI of state nodes (Multiplex) and averaged across network
layers (Average).

(a) (b) (c)

FIG. 2. Overlapping communities in multilayer benchmark
networks. We generate the multilayer networks in two steps.
(a) First, we generate T LFR benchmark networks with well-
defined communities, here illustrated with two network modes in
blue and red. (b) Then, we sample L network layers from each
mode network, here illustrated with four network layers in total.
(c) Each state node in the multilayer network is classified in a
community, such that communities of physical nodes may
overlap. In partition 1, each state node is correctly classified.
In partition 2, however, the light and dark color shades are
assigned to the same module, respectively. While these com-
munities provide the correct partition of each slice, they fail to
capture the communities of the two original mode networks.
Generalized modularity favors partition 2, whereas the multiplex
map equation favors partition 1.
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B. Multilayer community structure of
collaboration networks

We analyzed two inherently multilayer collaboration
networks, the Pierre Auger Collaboration of physicists
and a sample from the arXiv of researchers working on
networks. The Pierre Auger Collaboration is a group of
hundreds of theoretical and experimental scientists world-
wide working at the Pierre Auger Observatory, the largest
observatory of ultra-high-energy cosmic rays [41]. The
collaborators work together in different research topics
on specific tasks, e.g., source detection, mass composition,
experimental enhancements, and shower reconstruction,
etc. Scientists within the Collaboration may work on one or
more tasks, and every year, hundreds of internal technical
reports are submitted to the repository. [46] With access to
author lists and keywords, we reconstructed the inherently
multilayer collaboration network in which nodes represent
scientists, links indicate collaboration between scientists,
and layers represent tasks (see Table I). We considered all
submissions between 2010 and 2012 and assigned each
report to L ¼ 16 layers according to its keywords and its
content, with manual disambiguation to avoid spurious
results from an automated process. For each report with
more than one author, for each layer in which the report was
classified, and between any pair of theN ¼ 514 co-authors,
we added a weight 1=ðLðN − 1ÞÞ to the weighted, undi-
rected, and multilayer network. In this way, the sum of all
link weights of an author across all layers is simply the
number of reports written by the author. We built the arXiv
[47] multilayer network in the same way, but instead of
tasks, we used arXiv categories for layers (see Table II). To
restrict the analysis to a well-defined topic of research, we
only included papers with “networks” in the title or abstract
up to May 2014. We found 12,019 articles from 14,488

authors, whose names have been disambiguated by using
heuristics. Because some categories or tasks are more
related than others, communities naturally emerge across
layers when groups of scientists work on interdisciplinary
projects or several tasks simultaneously.
The collaboration networks show a highly overlapping

modular organization. In Fig. 4(a), we show the largest
connected component of the Pierre Auger Collaboration
network, including more than 90% of the scientists, and
their assignments into highly overlapping modules. Truly
multilayer nodes, i.e., those corresponding to scientists
active in more than one task, dominate the core of the
network in this visualization, whereas single-task scientists
are more peripheral nodes. For example, the multilayer
analysis reveals strong groups of collaboration across the
tasks of “point source,” “anisotropy,” and “magnetic,” [see
Fig. 5(a)]. Figure 4(b) shows that essential information
about the overlapping modular organization is washed
out when dynamics are modeled with r ¼ 1.0 or in the
aggregated network (not shown in the figure because,
qualitatively, it provided the same results), and scientists
are assigned to a few overlapping communities (r ¼ 1.0) or
one community only (aggregated network). Without men-
tioning names, we find scientists who are indisputably
active in several different tasks, with variegated collabo-
ration patterns captured only when dynamics are modeled
with r ¼ 0.15, whereas for r ¼ 1.0, the scientists are
grouped in single nonoverlapping communities. In another
case, we find two colleagues who work at nearby institu-
tions within the same city and with highly overlapping
interests and collaborations. For r ¼ 0.15, they are
assigned to highly overlapping modules across tasks,
whereas for r ¼ 1.0, they are assigned to different non-
overlapping partitions. Only by maintaining the multilayer
structure were we able to reveal the actual collaboration
structure. Similarly, Fig. 5(b) shows that communities also
extend across layers in the arXiv collaboration network.

TABLE I. The Pierre Auger Observatory: Each task defines a
layer in the multilayer co-authorship network.

Layer Task

1 Neutrinos
2 Detector
3 Enhancements
4 Anisotropy
5 Point source
6 Mass composition
7 Horizontal
8 Hybrid reconstruction
9 Spectrum
10 Photons
11 Atmospheric
12 SD reconstruction
13 Hadronic interactions
14 Exotics
15 Magnetic
16 Astrophysical scenarios

TABLE II. The arXiv repository: Each category defines a layer
in the multilayer co-authorship network.

Layer Category

1 physics.soc-ph
2 physics.data-an
3 physics.bio-ph
4 math-ph
5 math.OC
6 cond-mat.dis-nn
7 cond-mat.stat-mech
8 q-bio.MN
9 q-bio
10 q-bio.BM
11 nlin.AO
12 cs.SI
13 cs.CV
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Whereas communities typically only extend a few layers in
the Pierre Auger Collaboration network, communities in
the arXiv network can extend over multiple layers. This
means that scientists are rather task specific in the Pierre
Auger Collaboration, whereas researchers working on
networks often are involved in interdisciplinary projects,
although computer vision and mathematics seem to be
less interdisciplinary topics. In any case, the multilayer
networks analyzed with the map equation capture the fact
that scientists can simultaneously work in different groups
on different topics.
Table III summarizes the multilayer effects of commu-

nity detection with the map equation framework. For easy
comparison, we contrast multilayer results obtained with
dynamics modeled with relax rate r ¼ 0.15 with results
obtained with relax rate r ¼ 1.0. The latter maximum
relax rate corresponds to completely washed-out multilayer
information, but, unlike the aggregated networks, it allows
multiplex Infomap to assign nodes to multiple modules. For

both the Pierre Auger and arXiv networks, we find that flow
is confined in smaller and more overlapping modules. For a
physics explanation, we also measure this effect in terms of
the persistence gain in modules. For modules obtained with
r ¼ 0.15, the persistence gain quantifies how much longer
a random walker stays within the modules when dynamics
are modeled with r ¼ 0.15 compared with r ¼ 1.0. When a
random walker only moves freely between layers in one
step out of about six, compared with free movements
between layers in any step, we find that its chance to stay
within the same module increases by 25% and 13% in the

FIG. 4. Community structure in the Pierre Auger Collaboration network. (a) The overlapping community structure revealed by the
multiplex map equation with relax rate r ¼ 0.15. Nodes for scientists are colored according to their module assignments, with node sizes
proportional to the number of tasks in which they were active. Specifically, the area of a colored pie-chart slice is proportional to the
number of tasks in which the corresponding scientist is active. (b) Subsets of nodes with direct comparison with the overlapping
community structure obtained from dynamics with r ¼ 1.0.

(b) ArXiv(a) Auger

FIG. 5. Real multilayer networks with communities across
network layers. The heat maps show the similarities between
network layers, measured as the fraction of state nodes in different
network layers that are assigned to the same communities.

TABLE III. Summary of multilayer effects on community
detection.

Synthetic networks Real networks

T ¼ 1 T ¼ 3 Auger arXiv

Number of nodes n 256 256 514 14,488
Number of links l 1,400 4,000 12,964 70,350
Number of layers Ltot 3 9 16 13
NMI, r15 vs r100 1.0 0.0 0.74 0.92
Effective module size, r15 32 11 10 13
Effective module size, r100 32 128 16 17
Module assignment, r15 1.0 3.0 1.4 1.2
Module assignment, r100 1.0 1.0 1.1 1.0
Persistence gain (%) 0 163 25 13
Compression gain (%) 0 32 26 22

Synthetic networks with L ¼ 3 layers per state T. Modeled
dynamics denoted r15 and r100 for relax rates 0.15 and 1.0,
respectively. Effective module size measured as n=2HðSÞ, where
HðSÞ is the entropy of the distribution of module sizes in terms
of their flow volumes. Persistence and compression gains for
dynamics modeled with r15 compared with r100, and with
modular solution obtained for r15. All figures are significant.
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Pierre Auger and arXiv networks, respectively. As a result
of this persistence gain, the modular description of a
random walker’s trajectory can be significantly compressed
in both networks.
We also investigate how the relax rate allow us to change

the resolution of the module and the overlap across layers.
Figures 6 and 7 show the differences between the partitions
found with the multilayer and the aggregated approach.
At an increasing relax rate, the random walker becomes
less and less localized in a specific layer. Accordingly, the
NMI between the multilayer and the aggregated solutions
increases. For r ¼ 1, the walker moves freely between
layers, but the NMI does not equal 1 because the multilayer
solution still allows for overlap (the optimization algorithm
we used on the aggregated solution does not identify
overlaps by construction).
In both data sets, with increasing relax rate, we find

bigger modules (module size increases) which span more
layers, and fewer community assignments per physical
node (overlap decreases). The module size is defined as
the number of nodes divided by the effective number of
modules. The effective number of modules is defined as 2H,
where H is the Shannon entropy of the partition.
Since compressing data is dual to finding regularities in

the data [33,42], the multiplex map equation applied to the
multilayer representation allows us to discover patterns
that are absent in the aggregated network. Evidently, these
patterns contain essential information about the constraints
on flow through the systems.

V. CONCLUSIONS

In summary, compared with conventional network
analysis, multiplex Infomap applied to the studied multi-
layer networks uncovers interplay between network layers
and reveals smaller modules with more overlap that better
capture the actual organization. Shoehorning multiplex
networks into conventional community-detection algo-
rithms can obscure important structural information, and
earlier attempts at generalizing conventional community-
detection methods to identify communities across layers
have proven problematic. In contrast, thanks to the map
equation’s intrinsic ability to capture that sets of nodes
across layers represent the very same physical objects in
multiplex networks, the framework generalizes straightfor-
wardly. In the absence of empirical interlayer links, here
we have modeled the dynamics between layers. However,
interlayer interaction data would provide further important
information about the organization of social and biological
systems, thus calling for more empirical work.

ACKNOWLEDGMENTS

A. A. and M. D. D. were supported by the European
Commission FET-Proactive project PLEXMATH
(Grant No. 317614) and the Generalitat de Catalunya

(a) Auger 

(c) ArXiv

(b) Auger

(d) ArXiv

FIG. 6. Aggregation is responsible for significant changes in the
community structure. The panels show module sizes, number of
assignments per node (overlap), and NMI for communities
revealed from the multilayer and the aggregated networks in the
Pierre Auger Collaboration (top panels) and the arXiv (bottom
panels) networks. For a given relax rate, the NMI measures the
similarity between the obtained partition and the partitions ob-
tained from the aggregated topology (blue curve) and the aggre-
gated dynamics at relax rate r ¼ 1.0 (red curve), respectively.

(a) Auger 

(c) ArXiv

(b) Auger

(d) ArXiv

Aggregated

Aggregated

Aggregated

Aggregated

Maximum

Maximum

FIG. 7. Modules span more layers and overlap less with
increased relax rate. Panels (a) and (c) show the number
of nodes as a function of the memberships they have, i.e., the
number of modules the nodes belong to, for several values of the
relax rate. For each node, the maximum number of memberships
is the number of layers where the node appears: This is very close
to what we get for r ¼ 0, although the curves are not exactly the
same. For r ¼ 1, we still have some overlap compared to the
aggregated one, which is just a single point because each node
belongs to one single module. Panels (b) and (d) show the number
of modules that are present in the number of layers indicated on
the x axis. For small values of r, the modules tend to be localized
in fewer layers.

IDENTIFYING MODULAR FLOWS ON MULTILAYER … PHYS. REV. X 5, 011027 (2015)

011027-9



2009-SGR-838. A. A. also acknowledges partial financial
support from the European Commission FET-Proactive
project MULTIPLEX (Grant No. 317532), ICREA
Academia, and the James S. McDonnell Foundation.
M. R. was supported by the Swedish Research Council
Grant No. 2012-3729. The authors acknowledge all mem-
bers of the Pierre Auger Collaboration for kindly providing
access to the metadata of its repository for internal technical
reports, Dr. M. Settimo for kindly helping to classify all
reports to the proper task(s), and P. J. Mucha, M. A. Porter,
M. Bazzi, and L. Jeub for fruitful discussions.

APPENDIX: DYNAMICS ON MULTILAYER
NETWORKS

The rationale behind the multiplex map equation is
simple: Encode the trajectory between physical nodes
of a random walker that navigates between state nodes
in different layers [see Fig. 1(c)]. For a modular
description, the trajectory is encoded with unique code
words on all modules and all physical nodes within each
module, respectively. We are only interested in the
codelengths and can derive them from the stationary
distribution of the random walker. The stationary dis-
tribution on the state nodes can be derived from the
transition probabilities Pαβ

ij described in Eq. (1) for
interconnected networks with empirical interlayer link
weights and in Eq. (2) for multilayer networks with inter-
layer link weights modeled with relaxation parameter r.
Assuming that the stationary distribution of state node
i; α is pα

i , it can, in principle, be derived from the
recursive system of equations

pα
i ¼

X

j;β

pβ
jP

βα
ji : ðA1Þ

However, to guarantee a unique ergodic solution in
directed networks, we use teleportation at a low rate τ
to state nodes proportional to their intralayer in-strength
[43]. To reduce the smoothening effect of teleportation
and make the results more robust to the teleportation
parameter τ, we use unrecorded teleportation steps and
recorded steps along links [43]. We obtain the recorded
visit rates by first calculating the stationary distribution
with teleportation to state nodes proportional to their
out-strength,

~pα
i ¼ ð1 − τÞ

X

j;β

pβ
jP

βα
ji þ τ

sαiP
i;αs

α
i
; ðA2Þ

with the power-iteration method [44]. Then, we derive
the recorded steps along links qβαji and nodes pα

i in a
subsequent step,

qβαji ¼ ~pβ
jP

βα
ji ; ðA3Þ

pα
i ¼

X

j;β

qβαji : ðA4Þ

We use teleportation rate τ ¼ 0.15 throughout our analy-
sis of directed networks, but the results are robust to
variation of τ in a wide range around this value. For
undirected networks, results are independent of τ.
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1

Supporting Information

OUTLINE

The supporting information is organized into two sections.
In Sec. 1, we provide additional information about the syn-
thetic benchmark graphs. In particular, we study the impact
of the relax rate r on a special set of multilayer networks with
a different fraction of overlapping communities across layers.
Moreover, we provide additional details about the definition
of Normalized Mutual Information for multilayer networks.
Finally, in Sec. 2, we provide additional information about
the real datasets that we study. We have made code available
at www.mapequation.org

1. COMMUNITY STRUCTURE OF SYNTHETIC
MULTILAYER NETWORKS

In this section we provide additional information about the
synthetic benchmark graphs and associated performance tests.

1.1. NMI for multilayer networks

As explained in the main text, we use Normalized Mutual
Information to assess the similarity of the multilayer parti-
tions. Let us call X the community assignments of one par-
tition and Y the assignments of the other partition. The com-
munity assignments are the clusters to which the node-layer
tuples belong.

If we draw a tuple at random (with uniform probability),
the probability of observing a certain community x is propor-
tional to the number of tuples assigned to it: p(X = x) = nx/N,
where nx is the number of tuples in community x and N is the
total number of tuples. We can also define the joint probability
p(x,y), which is proportional to the number of tuples assigned
to community x in one partition and community y in the other.

For the NMI, we used the following definition:

NMI =
H(X)+H(Y )�H(X ,Y )

max
�
H(X),H(Y )

� , (S1)

where H is the Shannon entropy.
As a final remark, in our synthetic benchmark graphs, when

the number of layers is high, some tuples may never be sam-
pled. As a consequence, some tuples are in the reference par-
tition but not in the partition returned by the algorithm. To
resolve this issue, we only consider the tuples that appear in
both partitions.

1.2. Single layer NMI

As mentioned in the main text, instead of using the NMI for
multilayer networks, one can also look at the NMI between the
partitions in each single layer. Doing so, we get one measure

per layer, and by averaging all these measures, we can get an
estimate of how similar each partition in each single layer is
to each other. This measure, which we call Average NMI, is
more forgiving than the Multiplex NMI because it does not
account for how the nodes are assigned to clusters across lay-
ers.

Fig. S1 shows that the Multiplex Infomap also has a better
performance in this test. In fact running Infomap on each sin-
gle layer independently (Single Layer) tends to overestimate
the number of clusters, because the networks are fairly sparse
for large values of L.

(a)               T=1             (b)               T=3             

Figure S1 Average NMI on the same benchmark test of Fig. 3 as in
the main paper.

1.3. Benchmarks with overlapping communities across
layers

In the main text we have shown that Multiplex NMI ac-
counts for information flowing within layers and across layers.
A reasonable question is how Multiplex NMI behaves in mul-
tilayer topologies where the partitions are not multiplex com-
munities but they still overlap across layers. Another question
is under which conditions Average NMI and Multiplex NMI
would give the same result.

We consider a set of synthetic networks where each layer
consists of 256 nodes grouped in 8 cliques poorly intercon-
nected with each other. The communities in all layers are
assigned in order to obtain a specific fraction of overlapping
nodes across layers, i.e., subsets of nodes connected with each
other in different layers. In our numerical experiments, we
consider different realizations with overlapping fraction rang-
ing from 0 to 1. Moreover, we consider different values of
the relax rate, ranging from 0 to 1, to understand how the in-
terplay between structure (i.e., overlapping fraction) and dy-
namics (i.e., relax rate) affects the detection of the planted
partitions.

In Fig. S2, we show the resulting phase diagrams for a net-
work with two layers, reporting the number of modules and
the resulting NMI of state nodes (Multiplex NMI) and aver-
aged across network layers (Average NMI) against both over-
lapping fraction and relax rate. First, it is interesting to note
that, for a wide range of small overlapping fractions and relax
rates, the number of detected modules is 16. For overlapping
fraction smaller than 50 percent, the networks in the two lay-
ers are significantly different. For relax rate lower than 50–60

http://www.mapequation.org/
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percent, the layers do not couple and the flow stays preferen-
tially in the cliques within each layer separately. In this re-
gion, the two layers behave as if they are not part of the same
multiplex and the Multiplex NMI estimator is able to detect
this behavior, as shown in the right panel of the figure. Con-
versely, the Average NMI suggests that the found partitions
per layer are correct: this is equivalent to performing the stan-
dard community detection in each layer separately. Outside
this region, the two layers are more coupled because the re-
lax rate is sufficient to allow more information to flow within
them and, regardless of the overlapping fraction, the number
of detected modules is 8.

For an overlapping fraction larger than 50%, the Multiplex
NMI is 1 almost regardless of the relax rate. The average
NMI is also 1 in the same range, suggesting that the two es-
timators are equivalent in absence of multiplex communities
(see Fig. 2 of the main text) and in the presence of a high over-
lapping fraction across layers. This result suggests that high
overlap across layers induces fictitious multiplex communi-
ties, i.e. partitions that are not correlated by construction but
because of the topology. In this specific scenario, i.e. when
communities across layers are highly overlapped, the Average
NMI provides the same results of Multiplex NMI, and can be
used safely. A more suitable approach would be to use both
estimators to unveil the presence of correlations between lay-
ers.

Moreover, regardless of the overlapping fraction of the un-
derlying multilayer network, 8 modules are always revealed
from the analysis of the aggregated network. This result
shows the limitations of community detection in aggregated
networks: only when the two layers have highly overlap-
ping partitions is the aggregated network a good proxy for the
whole multilayer structure. However, this is not the case for
the majority of empirical multilayer networks, and aggrega-
tion could cause a significant loss of information, often lead-
ing to a misleading partitioning of the network.

Figure S2 Benchmarks on synthetic multilayer networks. Phase di-
agrams reporting how the number of modules and the corresponding
NMI (Multiplex and Average) change with the relax rate and the frac-
tion of overlapping communities across layers.

1.4. E↵ect of the relax rate

For multilayer benchmark networks considered in the main
text, the optimal range of relax rates depends on the number
of mode networks. For example, with only one mode network

and relax rate r = 1, it is possible to accurately identify the
communities in the mode network for any number of network
layers (see Fig. S3). For more than one mode network, on the
other hand, too high of a relax rate washes out the constraints
set by each mode network, whereas too low of a relax rate
overstates the constraints set by each network layer. Without
access to actual inter-layer link weights, the relax rate should
be chosen appropriately for the system under study.

Here we show the NMI for the synthetic benchmarks as
a function of the relax rate for a single-mode system: T =
1. We already showed the same diagram for a three-mode
system, T = 3, in Fig. 3 in the main paper (also shown here for
comparison). If there is a single mode, the optimal solution is
achieved for high values of the relax rate, because the data are
aggregated. However, as already shown, aggregating the data
cannot find the correct partition if multiple modes are present.
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Figure S3 NMI for the synthetic benchmark graphs as a function of
the relax rate r. (a) Performance on a single state system: higher
relax rates have a better performance because they are similar to the
aggregated. (b) For a three-state system, only the multilayer solution
can detect the correct partition, as the aggregated returns a single
module.

1.5. Modularity Optimization

We performed the same performance tests on generalized
modularity (1), and Fig. 3(d) in the main text shows that opti-
mizing modularity can only accurately identify communities
in each network layer separately in this specific benchmark
test. For no value of inter-layer coupling DX did the method
accurately identify the multilayer communities of the mode
networks. Specifically, for DX < 1, the average NMI shows
that the method is capable of detecting the correct partition of
each layer, but the multiplex NMI shows that it is not capa-
ble of identifying which network layers correspond to which
mode networks. For DX > 1, the performance drops further,
because inter-layer link weights dominate over intra-layer link
weights. We conclude that generalized modularity does not
identify this type of multilayer communities, because it uses
a null model only for intra-layer links and merely a coupling
parameter between layers (1, 2). As a result, merging differ-
ent communities across layers always improves the modular-
ity score, as illustrated in Fig. 3(c).
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2. SUPPLEMENTARY FIGURES FOR THE PIERRE
AUGER COLLABORATION DATASET

We show in Fig. S4 and Fig. S5 more detailed maps of the
community structures shown in the main text for the multi-
layer and the aggregated networks, respectively.
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Figure S4 Community detection in the Pierre Auger Collaboration network. Detailed map of the partitions obtained applying the map equation
with relax rate r = 0.15 to the multilayer network. The size of a node is proportional to the multilayer activity of the corresponding author: the larger
the number of tasks where he or she collaborates, the larger the size of the node. Colors within the pie chart code the different communities into which
the author is classified, where the area of each slice is proportional to the number of times the author is classified in the corresponding community.
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Figure S5 Community detection in the Pierre Auger Collaboration network. As in Fig. S4, considering r = 1.0.


