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Introduction
Networks are simple yet powerful representations of how things connect: the world wide 
web captures connections between websites, and social networks describe relationships 
between persons. So-called centrality measures determine node importance and enable 
us to rank nodes, compare them with each other, and find the most important ones. 
Real-world applications are manifold and include identifying the most popular websites, 
which components in an infrastructure network have the most impact when they fail, 
and who drives disease spreading in a social network.

Abstract 

To measure node importance, network scientists employ centrality scores that typi-
cally take a microscopic or macroscopic perspective, relying on node features or global 
network structure. However, traditional centrality measures such as degree centrality, 
betweenness centrality, or PageRank neglect the community structure found in real-
world networks. To study node importance based on network flows from a mesoscopic 
perspective, we analytically derive a community-aware information-theoretic central-
ity score based on network flow and the coding principles behind the map equation: 
map equation centrality. Map equation centrality measures how much further we can 
compress the network’s modular description by not coding for random walker transi-
tions to the respective node, using an adapted coding scheme and determining node 
importance from a network flow-based point of view. The information-theoretic cen-
trality measure can be determined from a node’s local network context alone because 
changes to the coding scheme only affect other nodes in the same module. Map equa-
tion centrality is agnostic to the chosen network flow model and allows researchers to 
select the model that best reflects the dynamics of the process under study. Applied 
to synthetic networks, we highlight how our approach enables a more fine-grained 
differentiation between nodes than node-local or network-global measures. Predicting 
influential nodes for two different dynamical processes on real-world networks with 
traditional and other community-aware centrality measures, we find that activating 
nodes based on map equation centrality scores tends to create the largest cascades in 
a linear threshold model.

Keywords: Community-aware, Centrality, Map equation, Random walk, Huffman 
coding

Open Access

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits 
use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original 
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third 
party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the mate-
rial. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or 
exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http:// 
creat iveco mmons. org/ licen ses/ by/4. 0/.

RESEARCH

Blöcker et al. Applied Network Science            (2022) 7:56  
https://doi.org/10.1007/s41109‑022‑00477‑9

Applied Network Science

*Correspondence:   
christopher.blocker@umu.se

1 Integrated Science Lab, 
Department of Physics, Umeå 
University, 901 87 Umeå, Sweden
2 Department of Computing 
Science, Umeå University, 901 
87 Umeå, Sweden

http://orcid.org/0000-0001-7881-2496
http://orcid.org/0000-0003-4072-8795
http://orcid.org/0000-0002-7181-9940
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1007/s41109-022-00477-9&domain=pdf


Page 2 of 24Blöcker et al. Applied Network Science            (2022) 7:56 

Classical centrality measures consider node importance on a microscopic scale at the 
node level or on a macroscopic scale at the network level. For example, degree centrality 
defines a node’s importance proportional to its degree, and betweenness centrality calcu-
lates node importance as the number of shortest paths that pass through it (Koschützki 
et al. 2005). Eigenvector centrality-based measures, such as Katz centrality (Katz 1953) 
and PageRank (Gleich 2015), implement a reputation system and derive a node’s impor-
tance from how important its neighbours are, leading to a system of recursive equations. 
However, real-world networks often exhibit community structure. Loosely speaking, 
they contain groups of nodes, so-called communities, with more connections within 
groups than between. But precise definitions of what constitutes a community differ 
depending on context and assumptions, resulting in a manifold of justifiable charac-
terisations (Fortunato 2010). Classical centrality measures neglect the mesoscopic scale 
of communities and can often not distinguish between nodes with the same features 
or nodes embedded in similar network regions. For example, degree centrality assigns 
the same score to same-degree nodes, and PageRank cannot distinguish between nodes 
receiving the same amount of support.

To address this issue, network scientists have developed community-aware cen-
trality scores that typically define node importance in terms of intra-community and 
inter-community link patterns. They commonly evaluate their effectiveness in a disease 
spreading setting where the objective is to contain an epidemic by immunising a lim-
ited fraction of the population (Cherifi et al. 2019; Masuda 2009; Ghalmane et al. 2019; 
Rajeh et al. 2021). For example, community-based betweenness centrality considers only 
shortest paths with endpoints in different communities (Kitromilidis and Evans  2018). 
Community hub-bridge calculates a node’s importance as the sum of its intra-commu-
nity and inter-community links, weighted by the size of the node’s community and the 
number of communities it connects to, respectively (Ghalmane et  al. 2019). Commu-
nity-based centrality determines a node’s importance as the number of connections it 
has to other communities, weighted by the communities’ relative sizes (Zhao et al. 2015). 
Masuda proposed a measure based on eigenvector centrality that quantifies a node’s cen-
trality in terms of its contribution to the connectivity between modules, giving higher 
importance to those nodes that, if removed, would fragment the network more (Masuda 
2009). Modular centrality defines a generic framework that operates on top of classi-
cal centrality measures to retrofit them with community awareness. It decomposes the 
network into local, intra-community, and global, inter-community parts and represents 
a node’s centrality as a combination of a local and global component (Ghalmane et al. 
2019). In networks with overlapping community structures, nodes that belong to several 
communities may have high influence despite having a low degree because they act as 
bridges between communities (Kumar et al. 2018). For epidemic settings, a node’s num-
ber of community memberships, sometimes called membership centrality, is typically at 
least as good an estimator of influence as global centrality measures (Hébert-Dufresne 
et al. 2013). Assuming a network’s overlapping community structure is known, random 
walk-based approaches can be employed to extract high-degree nodes from overlapping 
regions (Taghavian et  al. 2017). Overlapping modular centrality generalises modular 
centrality and takes into account the possibly multiple community memberships that 
nodes have, resulting in increased influence in the local parts of a network (Ghalmane 
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et  al. 2019). Recently, modularity vitality has been proposed (Magelinski et  al. 2021) 
based on the community-detection approach known as modularity (Newman and Gir-
van 2004) and generalised to overlapping communities (Rajeh et al. 2021).

We focus on non-overlapping community structure and derive a centrality score from 
the information-theoretic community-detection method known as the map equation 
(Rosvall and Bergstrom 2008) analytically: map equation centrality. Deriving commu-
nity-aware centrality scores from a community-detection approach provides more clar-
ity and precision because the resulting measures adopt the same assumptions regarding 
what constitutes communities as the underlying community-detection approach. The 
map equation framework uses random walks to model network flows and identifies 
communities as those network regions where a random walker tends to spend a long 
time before switching to a different region. Therefore, map equation centrality deter-
mines node importance from a flow-based perspective. Using a toy example, we high-
light how map equation centrality exploits community structure to distinguish between 
nodes where classical centrality measures fail. To understand how map equation cen-
trality is affected by randomness in the link patterns of a network, we generate an Lan-
cichinetti-Fortunato-Radicchi (LFR) network with planted community structure, rewire 
different fractions of the links, and compare the resulting community structures and 
node centralities with the ground truth. To evaluate the performance of map equation 
centrality, we apply it to twelve empirical networks to identify influential nodes. Like 
in previous work on centrality scores, we contrast our predictions with the spreading 
power of nodes obtained from simulations of a Susceptible-Infected-Recovered (SIR) 
disease-spreading model (Ghalmane et al. 2019; Rajeh et al. 2021) and the adoptions of 
ideas modelled by the linear threshold model (Rajeh et  al. 2022). For comparison, we 
include degree centrality as a local measure, betweenness centrality as a global meas-
ure, as well as three other community-aware centrality measures in our evaluation. We 
find that map equation centrality performs amongst the best in half of the networks in 
the SIR setting and tends to outperform the baseline measures in the linear threshold 
setting.

The map equation framework
The map equation (Rosvall and Bergstrom 2008) is a flow-based information-theoretic 
objective function for community detection. It takes a network G = (V ,E, δ) , possibly 
weighted and/or directed, and a partition M of the network’s nodes into modules as 
input, and measures how well the partition captures the network’s community structure. 
Here, V is the set of nodes, E ⊆ V × V  is the set of links, and δ : E → R

+ is a function 
that assigns weights to the links. A partition M is a split of the network’s nodes into dis-
joint, possibly nested sets.

Conceptually, the map equation models network flow with a random walk on the 
network and calculates how many bits are required, on average, to encode one ran-
dom-walker step. To explain the inner workings of the map equation, we consider a com-
munication game where the sender updates the receiver about the location of a random 
walker on a network. We assume that, when at node u, the probability that the random 
walker chooses an outgoing link e = (u, v) ∈ E is proportional to the link’s weight, δ(e).
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In the simplest case, when there is only one module that contains all nodes, we assign 
unique codewords to the nodes according to a Huffman code based on the nodes’ visit 
rates at ergodicity. We refer to such a partition as the one-level partition and denote it 
as M1 . When the random walker takes a step, the sender communicates one codeword to 
the receiver (Fig. 1a). According to Shannon’s source coding theorem (Shannon 1948), 
the lower bound for the per-step codelength, L, is precisely the entropy of the nodes’ 
visit rates,

where H is the Shannon entropy, P is the set of node visit rates, and pu is the visit rate of 
node u.

In undirected networks, we calculate the node visit rates analytically as pu = su
∑

v∈V sv
 , 

where su = v∈V δ((u, v)) is the strength of node u. In directed networks, we obtain the 
visit rates numerically as the stationary distribution of a random walk on the network. 
The Perron-Frobenius theorem guarantees the existence of such an ergodic distribution 
in strongly connected networks; to ensure ergodicity in weakly-connected networks, 
there are different options. PageRank relaxes these dynamics by introducing uniform 
node teleportation, letting the random walker teleport to a node selected uniformly at 
random at some small rate (Gleich 2015), introducing a teleportation parameter. To 
reduce the effect of this parameter, an alternative is so-called unrecorded link teleporta-
tion (Lambiotte and Rosvall 2012), a similar approach where the random walker tele-
ports, at some small rate, to links proportionally to their weight.

In networks with community structure, we can achieve shorter codelengths than with 
the one-level partition. Splitting the nodes into modules allows us to assign unique 
codewords within modules, and re-use codewords across modules. However, we need to 
pay for this by encoding transitions between modules: we introduce one designated exit 
codeword per module, as well as an index-level codebook for encoding transitions into 
modules. Now, the sender communicates one codeword for transitions within modules, 
and three codewords for transitions between modules, that is one module exit code-
word from the old module codebook, one module entry codeword from the index-level 

(1)L(G,M1) = H(P) = −
∑

u∈V

pu log2 pu,

Fig. 1 A communication game on a network where colours indicate module assignments and node labels 
show codewords. The black trace shows a possible node sequence during a random walk; the corresponding 
sequence of codewords to describe the walk is shown in the bottom. The average per-step codelength 
is shown as L. a The one-level partition where all nodes are in the same module and there is only one 
codebook. b Nodes are split into two modules with one codebook per module and an additional index-level 
codebook, indicated by coloured arrows. Module entry and exit codewords are shown on the left and right 
of the arrows, respectively. The codelength L is reduced because the partition captures those areas where the 
random walker tends to stay for a longer time
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codebook, and one codeword from the new module codebook to visit a node in the 
new module (Fig. 1). The codelength for such a two-level map is given by the sum of the 
index-level entropy and the module-level entropies, weighted by the rate at which each 
codebook is used,

Here, Pm = {pu | u ∈ m} ∪ {mexit} is the set of node visit rates for module m , including 
the module exit rate for module m , mexit , and pm =

∑

p∈Pm
p is the rate at which the 

sender uses the codebook for module m . Q = {menter |m ∈ M} is the set of module entry 
rates, and q =

∑

qm∈Q qm is the rate at which the sender uses the index-level codebook.
When a partition reflects the structure of the network well and groups those nodes 

together where the random walker stays for a longer time, transitions between modules 
occur at a low frequency, overall compressing the average per-step codelength. Thus, 
finding the optimal partition according to the map equation becomes a search problem. 
Through recursion, we can generalise this approach to partitions nested at arbitrary 
depth and reduce the codelength even further in networks with hierarchical community 
structure.

Map equation centrality
To define our community-aware centrality score, map equation centrality, we take inspi-
ration from the concept of network vitality. Given a function f that operates on networks 
and calculates a numerical value, the vitality µ(G,u) with respect to a node u is defined 
as

where G − {u} denotes G with u removed (Koschützki et al. 2005). But because remov-
ing a node and its incident links from the network would disrupt the network’s commu-
nity structure and change the nodes’ visit rates, instead, we keep the network unchanged 
and only omit u when describing the community structure—we call this silencing a node. 
We realise silencing with the Vickrey–Clarke–Groves (VCG) principle for setting prices 
in multi-item auctions, such as AdWords auctions, a generalisation of second-price 
sealed-bid auctions for single items where the bidder who submits the highest bid for an 
item receives the item for the value of the second-highest bid (Vickrey 1961). The VCG 
mechanism determines the price that bidder b has to pay for item i as the marginal harm 
caused to other bidders who, because of b’s existence, receive an item j  = i that they 
value lower than i. The price that b pays for i is “the difference between the optimal valu-
ation achievable by allocating everyone except person b to all the positions and the opti-
mal valuation obtainable by allocating everyone except person b to all positions other 
than i” (Leonard 1983). Specifically, b’s price for i does not depend on b’s own wealth 
but is determined by the collective marginal harm caused to the remaining bidders. Fol-
lowing the same idea, we define a node u’s importance as the collective marginal harm 
it causes to the remaining nodes in terms of codeword length, that is, by how many bits 
the codeword lengths for the remaining nodes could be reduced if u was silenced.

(2)L(G,M) = qH(Q)+
∑

m∈M

pmH(Pm).

(3)µ(G,u) = f (G)− f (G − {u}),
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In terms of the communication game, silencing a node means that, when the random 
walker visits a silenced node u, the sender does not communicate the codeword for visit-
ing u to the receiver (Fig. 2a). But this is inefficient because node u has a codeword that 
is never used, that is, the sender uses more bits than necessary to describe the random 
walk. Instead, we can design a new coding scheme without assigning a codeword to u and, 
thereby, compress the description of the random walk (Fig. 2b). Map equation centrality 
is always positive because silencing a node deletes its codeword from the coding scheme, 
making it possible to assign shorter codewords to the remaining nodes. Following the VCG 
principle, we define the centrality of node u as the difference between the original, ineffi-
cient code—we call it Lu—and the updated, efficient code—we call it Lu∗,

Paraphrasing the VCG principle, map equation centrality for node u is the codelength 
difference between the optimal coding scheme that assigns codewords to all nodes but 
never uses the codeword for node u and the optimal coding scheme that assigns code-
words to all nodes but u. We derive expressions for Lu and Lu∗ from the map equation, 
and, for clarity, begin with one-level partitions, then moving on to two-level and hierar-
chical partitions.

First, we consider the case where we use the old coding scheme. We obtain the codelength 
resulting from silencing u from Eq. 1 by removing u from the summation,

Designing a new coding scheme without a codeword for u changes the codeword lengths 
for the rest of the nodes. Before, the codeword length for some node v was given by its 
visit rate as log2 pv , but now that u does not receive a codeword anymore, we need to re-
normalise accordingly. The new codeword length for node v  = u is log2

pv
1−pu

 , and for u it 
is zero, resulting in a codelength of

(4)�(G,M,u) = Lu(G,M)− Lu∗(G,M).

(5)Lu(G,M1) = −
∑

v∈V ,v �=u

pv log2 pv .

(6)Lu∗(G,M1) = −
∑

v∈V ,v �=u

pv log2
pv

1− pu
.

(a) (b)

Fig. 2 Two options for describing a random walk when a node is silenced, with the silenced node shown 
as a ring. In both cases, the sender still communicates module entries through the silenced node. a Using 
the same code as before: when the random walker visits the silenced node, the sender does not use 
the corresponding node-visit codeword. b Designing a new code: the silenced node does not receive a 
codeword and visits to that node cannot be encoded
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Plugging Eqs. 5 and 6 into Eq. 4, we get u’s contribution to the codelength in the one-
level partition M1,

We move on to derive the same quantities for two-level partitions M . Again, we begin 
by considering the resulting codelength when silencing node u but using the old coding 
scheme. Then, we design a new coding scheme that does not assigning a codeword to u, 
and calculate the difference between the two coding schemes to obtain u’s contribution. 
For clearer derivations, we distinguish explicitly between mu , the module that contains 
u, and the rest of the modules by rewriting the map equation (Eq. 2),

From Eq. 8, it becomes clear that silencing node u in a two-level partition only affects 
the module that contains u because a codeword for u only exists in the context of mu , 
but not in other modules. The codelength for a two-level partition M , using the old cod-
ing scheme while u is silenced is

Because of the modular structure of the coding scheme, when designing a new code, 
only codewords for nodes in module mu are affected while other modules and the index 
level remain unaffected. The new codebook usage rate for module mu is pmu − pu , which 
is also the term we use for re-normalising the node visit rates for nodes in mu . That is, 
the new rate at which the codeword for v ∈ mu with v  = u is used is pv

pmu−pu
 , and the 

module exit codeword is used at rate muexit
pmu−pu

 . The new codelength for M is

Plugging Eqs. 9 and 10 into Eq. 4, we get u’s contribution to the two-level codelength 
where the terms for the index level and those modules that do not contain u cancel out,

For the one-level partition M1 , the expression in Eq. 11 reduces to Eq. 7 because all nodes 
are in the same module and, consequently, pmu = 1.

Through recursion, we can extended map equation centrality to hierarchical parti-
tions with more than two levels. In fact, since silencing a node u only affects module mu , 
Eq. 11 can be used to calculate centralities for nodes in modules that are nested deeper 

(7)
�(G,M1,u) = Lu(G,M1)− Lu∗(G,M1)

= −(1− pu) log2 (1− pu).

(8)

(9)

(10)

(11)

�(G,M,u) = Lu(G,M)− Lu∗(G,M)

= −
∑

p∈Pmu\pu

p log2
pmu − pu

pmu

= −
(

pmu − pu
)

log2
pmu − pu

pmu
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in the module hierarchy of a network. Further, we can extend map equation centrality to 
silencing a set of nodes by adjusting Eqs. 9 and 10 (see “Appendix”), leading to

Here, U is the set of nodes that are silenced, and pm∩U =
∑

u∈m∩U pu is the sum of visit 
rates for the silenced nodes in module m . Moreover, map equation centrality is agnos-
tic to the chosen flow model and can be used with standard PageRank, unrecorded link 
teleportation, or other suitable flow models that may be chosen based on the dynamic 
process that is analysed. Map equation centrality can be generalised to overlapping com-
munities through memory networks (Edler et  al. 2017) using trajectory data to deter-
mine link weights.

Map equation centrality relates to the Kullback-Leibler divergence, also known as rela-
tive entropy, and defined as DKL(P||Q) = −

∑

x∈X p(x) log2
q(x)
p(x) , where X is a set of 

events, and P and Q are probability distributions over X. The KL divergence quantifies 
the expected number of extra bits that are required to encode a sequence of events with 
true distribution P, assuming that we use a code optimised for Q. In this light, the impor-
tance of a node u is the Kullback-Leibler divergence between encoding visits in module 
mu with true codebook usage rate pmu and silencing u, resulting in a new codebook usage 
rate after silencing of pmu

− pu . Because no other modules than mu contribute to our 
score, u’s importance under map equation centrality is fully determined by its own visit 
rate pu and its modular context through pmu.

Application to synthetic and empirical networks
We have implemented map equation centrality in Infomap, a fast and greedy optimisa-
tion algorithm for the map equation with an open source implementation available on 
GitHub1 (Edler et al. 2020). In a network with n nodes, Infomap detects communities 
and computes codeword usage rates for all nodes and codebook usage rates for all mod-
ules in time O

(

n log n
)

 (Edler et al. 2017). With this information available, traversing the 
network partition and computing map equation centrality scores for all n nodes takes 
time O(n) . Detecting communities and computing map equation centrality scores com-
bined takes time O

(

n log n
)

.
To evaluate map equation centrality, we apply it to synthetic and empirical networks. 

First, using a toy example, we highlight how map equation centrality overcomes tradi-
tional centrality scores’ inability to distinguish between same-feature nodes when adopt-
ing a local or global point of view. Second, we generate an LFR network with strong 
community structure and measure how the ranking of nodes according to map equa-
tion centrality changes as we rewire different fractions of the network’s links. Third, 
we evaluate map equation centrality alongside two traditional and three community-
aware centrality scores on a set of empirical social, biological, web, co-authorship, and 
infrastructure networks using two different spreading processes, (i) the linear thresh-
old model and (ii) the Susceptible-Infected-Recovered (SIR) disease spreading model. 

(12)�(G,M,U) = −
∑

m∈M,m∩U �=∅

(pm − pm∩U ) log2
pm − pm∩U

pm
.

1 https:// github. com/ mapeq uation/ infom ap.

https://github.com/mapequation/infomap
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We explore the centrality scores through the lens of two different spreading processes 
because they highlight various aspects. Neither of them is more valid than the other but 
they are simply tools for comparison of different use cases. In both cases, we test two 
different flow models as a basis for community detection with Infomap: (a) unrecorded 
link teleportation (Lambiotte and Rosvall 2012), and (b) recorded node teleportation, 
corresponding to standard PageRank with teleportation rate 0.15 (Gleich 2015). In prin-
ciple, one could define further domain-specific flow models, determine node visit rates 
through simulations, and use them as an input for Infomap. For reproducibility, we pro-
vide our code for evaluation in a GitHub repository.2

Toy example: how map equation centrality discerns same‑feature nodes

We use a small, undirected network with eight nodes and ten links (Fig.  3), and use 
networkx (Hagberg et al. 2008) and Infomap to calculate centrality scores for its nodes 
(Table 1). The optimal way to partition the network, by design and recovered by Info-
map, is to group the nodes into two communities as indicated by colours (Fig. 3b).

We find that neither degree centrality nor map equation centrality when based on 
the one-level partition M1 = {1, 2, 3, 4, 5, 6, 7, 8} can distinguish between nodes with the 
same degree (Fig. 3a, Table 1). This is because using M1 turns map equation centrality 
into a global approach, ignoring the network’s mesoscopic community structure. How-
ever, when using the sub-optimal two-level partition Msub = {{1, 2, 3}, {4, 5, 6, 7, 8}} with 
codelength 3.24  bits, or the optimal two-level partition Mopt = {{1, 2, 3, 4}, {5, 6, 7, 8}} 

Fig. 3 Illustration of the centrality scores from Table 1. Node colours indicate community assignments, node 
diameter is proportional to a degree centrality and PageRank without teleportation, and b map equation 
centrality

Table 1 Rounded centrality scores for the toy network: degree centrality (DC), betweenness 
centrality (BC), PageRank without teleportation (PR), and map equation centrality ( � ) for the one-
level partition M1 , a sub-optimal partition Msub , and the optimal partition Mopt , shown in (Fig. 3)

u DC BC PR �(M1) �(Msub) �(Mopt)

1 0.43 0.02 0.15 0.20 0.16 0.184

2 0.29 0 0.10 0.14 0.12 0.130

3 0.29 0 0.10 0.14 0.12 0.130

4 0.57 0.60 0.20 0.26 0.24 0.228

5 0.57 0.67 0.20 0.26 0.24 0.212

6 0.29 0 0.10 0.14 0.13 0.127

7 0.29 0 0.10 0.14 0.13 0.127

8 0.14 0 0.05 0.07 0.07 0.068

2 https:// github. com/ mapeq uation/ map- equat ion- centr ality.

https://github.com/mapequation/map-equation-centrality
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with codelength 2.47 bits (Fig. 3b), map equation centrality distinguishes between same-
degree nodes that are embedded in different modules while same-degree nodes in the 
same module remain indistinguishable (Fig. 3b, Table 1). We explain this by interpret-
ing Eq. 11: the importance of a node u is determined by its visit rate, pu , as well as the 
codebook usage rate of its module, pmu , that is, modules with a higher codebook usage 
rate boost the importance of their member nodes to a higher degree than modules with 
a lower codebook usage rate.

Synthetic network: behaviour of map equation centrality under link rewiring

We generate an LFR network (Lancichinetti et  al. 2008) with 1000 nodes, average 
degree k = 10 , minimum community size 100, node degree exponent γ = 2.5 , com-
munity size exponent β = 1.5 , and mixing parameter µ = 0.1 . The resulting net-
work has 7 communities, and, using those communities, we calculate map equation 
centrality scores for all nodes. We then rewire an r-fraction of the network’s links 
and use Infomap to detect communities M in the rewired network and Kendall’s τ 
coefficient to measure how the nodes’ ranking has changed. With adjusted mutual 
information (AMI), we estimate the agreement between the new communities and 
the ground truth community structure. We also compute the effective number of 
communities as the perplexity over the relative modules’ sizes, M̃ = 2H(M) , where 
H(M) =

∑

m∈M
|m|
N

log2
|m|
N

 is the Shannon entropy of the relative module sizes, N is 
the number of nodes in the networks, and |m| is the number of nodes in module m . 
The effective number of modules is the number of same-size modules with the same 
entropy into which the nodes would be partitioned. An effective number of modules 
close to the actual number of detected modules indicates that the detected commu-
nities have similar size, whereas a much smaller number of effective modules indi-
cates partition with a smaller number of large modules and a larger number of small 
modules. For robust results, we repeat the rewiring for each r 100 times and report 
average values for AMI, τ , resulting mixing µ , the number of communities M, and the 
number of effective communities M̃ ; the results are shown in Fig. 4.

Fig. 4 Results under rewiring of an LFR network. For each fraction of rewired links, r, we infer the community 
structure with Infomap and compute map equation centrality scores. We report AMI with the ground truth 
partition, correlation with the node ranking under the ground truth partition, τ , the mixing, µ , as well as 
the number of detected communities M and effective number of communities M̃ . The reported values are 
averages over 100 rewirings for each r 
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Overall, we see that small amounts of noise caused by rewiring can affect the node 
ranking to a larger extent despite a relatively stable number of communities with high 
AMI values.

Datasets and methods

We use twelve real-world networks, retrieved from netzschleuder (Peixoto  2020), to 
evaluate map equation centrality’s performance. Seven of the networks are undirected 
while five are directed.

Facebook friends undirected network of Facebook friendships, recorded in April 
2014, where a link between users A and B means that they are friends on Facebook 
(Maier and Brockmann 2017).
Copenhagen undirected network of Facebook friendships between university stu-
dents from Copenhagen where a link between users A and B means that they are 
friends on Facebook (Sapiezynski et al. 2019).
Uni email directed network of email exchanges at the Rovira i Virgili University in 
Spain, recorded in 2003, where a link from user A to user B means that user A has 
sent an email to user B (Guimerà et al. 2003).
Polblogs directed network of U.S. political blog websites, recorded in 2004, where a 
link from blog A to B means that A has a hyperlink to B (Adamic and Glance  2005).
Interactome yeast undirected network of yeast proteins where a link between 
proteins A and B means that they interact with each other (Coulomb et al. 2005).
Ego Facebook undirected network of Facebook friendships, recorded in 2012, 
where a link between users A and B means they are friends on Facebook (Mcauley 
and Leskovec 2014).
Power undirected network of the power grid in the western U.S. where nodes rep-
resent generators, transformers, and substations, and they are connected by a link 
if a high-voltage transmission line runs between them (Watts and Strogatz 1998).
Facebook organizations undirected network of Facebook friendships between 
users working at the same organization, a link between users A and B means that 
they are friends on Facebook (Fire and Puzis 2016).
Physics collaborations undirected co-authorship network between research-
ers who have a preprint on arXiv, recorded in May 2014, where a link between 
researcher A and B means that they have written an arXiv preprint together (De 
Domenico et al. 2015).
Google directed network of hyperlinks between internal websites at Google, 
recorded in 2004. A link from page A to B means that there is a hyperlink from A 
to B (Palla et al. 2007).
PGP directed network of users in the Pretty-Good-Privacy (PGP) web of trust, 
recorded in November 2009. A link from user A to user B means that user A trusts 
user B (Richters and Peixoto 2011).
Facebook wall directed network of interactions between Facebook users, 
recorded in 2009, where a link from user A to user B means that user A has posted 
on user B’s wall (Viswanath et al. 2009).
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Table  2 provides details about the networks’ size, average node degree, epidemic 
threshold; their number of communities as detected with Infomap, effective number 
of communities, and mixing, both for link and node teleportation. Since estimating 
nodes’ spreading power with the SIR simulation as well as the linear threshold model 
disregard link weights, we treat all networks as unweighted. 

To infer the networks’ community structure, we select the solution with the short-
est codelength from 1000 Infomap runs, both using unrecorded link teleportation 
and recorded node teleportation with teleportation rate 0.15 where the latter corre-
sponds to standard PageRank. We test different flow models because they describe 
different dynamic processes on the network, lead to different community structures, 
and are therefore suitable for different applications. In our evaluation, we consider 
two-level partitions with non-overlapping communities. We have also tested hier-
archical partitions, but did not see a substantial performance difference. For com-
parison, we include degree centrality as a local measure, betweenness centrality as 
a global measure, and the three community-aware centrality scores modularity 
vitality (Magelinski et al. 2021), community hub-bridge (Ghalmane et al. 2019), and 
community-based centrality (Zhao et al. 2015). Modularity vitality calculates a node 
u’s importance, given a network G and a partition M , as the difference in modular-
ity between the original network and partition and the network and partition with 
u removed, Q(G,M)− Q(G − {u},M− {u}) , where Q is the modularity function. 
Depending on whether deleting a node and its incident links increases or decreases 
the partitions modularity, the result can be positive or negative. Following previous 
evaluations, we consider modularity vitality’s absolute value (Rajeh et al. 2021). Com-
munity hub-bridge determines a node u’s importance by considering its intra- and 
inter-community links, weighing them by u’s own community size and the number 
of other communities it links to, respectively, assigning high importance to nodes 
with many links in large communities and nodes with many links to a large number 

Table 2 Details for eight empirical networks: their number of nodes, N, number of links, |E| , average 
degree, k, epidemic threshold, pth ; the number of communities inferred with Infomap, M, the 
effective number of communities M̃ , and mixing, µ , both for link and node teleportation

Directed networks are marked with *

Network N |E| k pth Link teleportation Node teleportation

M M̃ µ M M̃ µ

Facebook friends 329 1954 11.9 0.048 21 13 0.129 22 13 0.115

Copenhagen 800 6429 16.1 0.038 37 29 0.499 36 29 0.499

Uni email* 1133 5452 19.2 0.027 50 32 0.406 55 34 0.409

Polblogs* 1222 19,024 31.1 0.010 88 6 0.164 51 6 0.177

Interactome yeast 1458 1993 2.7 0.161 166 142 0.237 178 154 0.247

Ego Facebook 4039 88,234 43.7 0.009 77 32 0.082 86 35 0.083

Power 4941 6594 2.7 0.348 428 377 0.163 465 416 0.177

Facebook organizations 5524 94,219 34.1 0.016 53 30 0.360 62 40 0.391

Physics collaborations 8798 27,416 6.2 0.066 610 491 0.218 656 537 0.227

Google* 15,763 171,206 21.7 0.001 597 260 0.470 600 225 0.518

PGP* 39,796 301,498 15.2 0.010 2851 1529 0.285 3285 1843 0.305

Facebook wall* 43,953 271,375 12.3 0.028 2995 1375 0.493 3228 1747 0.519
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of communities, 
∑

m∈M |m| · kmu +NNCu · k
m
u  . Here, kmu  is the number of u’s neigh-

bours in module m , NNCu is u’s number of neighbouring communities, and kmu  is 
the number of u’s neighbours outside of m . Community-based centrality calculates a 
node’s importance as the number of connections it has to the different communities, 
weighted by the communities’ relative sizes, 

∑

m∈M kmu
|m|
N .

Evaluation with the linear threshold model

The linear threshold model simulates the spread and adoption of ideas and behaviours 
through a network and has previously been applied to evaluate the performance of com-
munity-aware centrality scores (Rajeh et al. 2022). In the linear threshold model, nodes 
can be in either of two states, that is, they can be active or inactive. At the beginning of 
the simulation, we activate an x-fraction of the nodes, selected as the nodes with the 
highest centrality according to a centrality measure; all other nodes begin inactive. Then, 
during each time step of the simulation, the inactive nodes check what fraction of their 
neighbours is active, and get activated if that fraction is at least as high as a given thresh-
old t. This threshold can be uniform across all nodes, or it can be node-dependent. Here, 
in absence of node-dependent threshold information in the data, we use the uniform 
threshold t = 0.5 , and include further results for thresholds t ′ = 0.4 and t ′′ = 0.6 in the 
“Appendix”. The simulation continues until no more nodes get activated; then we count 
the influence of the initially active nodes in terms of the activation size, that is the frac-
tion of active nodes, where a larger activation size means that the initially active nodes 
have more influence.

We find that, for large enough fractions of initially active nodes, map equation central-
ity outperforms the other measures when using the recorded link teleportation-based 
flow model in most cases, but has lower performance when based on unrecorded link 
teleportation. Modularity vitality tends to outperform community hub-bridge, and 
community-based centrality, but is itself often outperformed by betweenness central-
ity, especially in the larger and directed networks. For small fractions of initially active 
nodes, community hub-bridge and community-based centrality tend to perform bet-
ter than map equation centrality and modularity vitality. Further, the flow model choice 
has a larger effect on map equation centrality than on modularity vitality, community 
hub-bridge, and community-based centrality. All of the measures tend to perform bet-
ter when using the PageRank-based communities (Fig. 5a–l). We describe the results in 
more detail in the “Appendix”.

Evaluation with the SIR disease spreading model

The second spreading process we use to evaluate map equation centrality’s performance 
is a discrete-time SIR disease spreading simulation. We follow the approach taken by  
Rajeh et  al. (2021) to test how accurately the centrality measures identify influential 
nodes.

To estimate a node u’s influence, we calculate its spreading power, that is the expected 
number of nodes that get infected by a disease with the single initial spreader u: Initially, 
only node u is infected, all other nodes begin in the susceptible state, and the recovery 
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time is set to 1 time step. As long as there are infected nodes, the simulation continues. 
Infected nodes infect their susceptible neighbours independently with probability pth , 
then they recover. Here, pth is the so-called epidemic threshold (Table  2) with 
pth =

�k�
�k2�−�k�

 where 
〈

k
〉

= 1
|V |

∑

v∈V kv and 
〈

k2
〉

= 1
|V |

∑

v∈V k2v  are the first and sec-

ond moment of the network’s degree sequence, respectively (Wang et al. 2016). When 
no infected nodes are left, the simulation ends, and we determine u’s spreading power as 
the number of recovered nodes. Because of the stochasticity in the SIR model, we repeat 
the simulation 1000 times per node to calculate its expected spreading power.

Let Mc and MSIR be the lists of nodes, ranked according to centrality score c, and their 
spreading power as determined with the SIR simulation, respectively. Then, we measure 
the ability of centrality score c to identify influential spreaders using the so-called impre-
cision function, ǫc(x) = 1− Mc(x)

MSIR(x)
 (Kitsak et al. 2010). Here, Mc(x) and MSIR(x) are the 

average spreading power of the top x-fraction of nodes according to centrality score c 
and the SIR simulation, respectively. A smaller imprecision value corresponds to a better 
alignment between centrality score c and spreading power.

In four of the tested networks, map equation centrality outperforms modularity vital-
ity, community hub-bridge, and community-based centrality, performs second-to-third 
best in six networks, is worst or second-worst in the remaining two networks when 
based on unrecorded link teleportation. The performance is often similar to degree cen-
trality because the nodes’ visit rates for unrecorded link teleportation are proportional 
to their degree in undirected networks (Lambiotte and Rosvall 2012). Our community 
hub-bridge and community-based centrality implementations in directed networks 

Fig. 5 Activation size for map equation centrality (MEC), modularity vitality (MV), community hub-bridge 
(CHB), community-based centrality (CBC), degree centrality (DC), and betweenness centrality (BC) in twelve 
empirical networks under the linear threshold model with threshold t = 0.5 . Community structures are 
identified with Infomap; solid lines use the unrecorded link teleportation flow model, dashed lines use 
recorded node teleportation
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consider nodes’ outgoing links. Because nodes with higher out degrees are expected to 
infect more nodes in the SIR model, our implementations may explain the measures’ 
good performance. In contrast, map equation centrality cares about the nodes’ in-degree 
because the flow in the map equation framework is based on random walker transitions 
into the nodes. To calculate degree and betweenness centrality, networkx considers the 
nodes’ total degree. With recorded node teleportation, map equation centrality does not 
perform as well and is often more similar to betweenness centrality. Modularity vitality, 
community hub-bridge, and community-based centrality are less affected by the choice 
of flow model (Figs. 6a–l). We describe the results in more detail in the “Appendix”.

To investigate whether map equation centrality is at an advantage because it is by 
definition faithful to the map equation, we have repeated our experiments in the four 
networks where map equation centrality performed best, using partitions based on 
modularity maximisation. We infer the community structure in the Copenhagen, Uni 
email, Ego Facebook, and Facebook organizations networks, with the Louvain algo-
rithm (Blondel et  al. 2008), using the networkx implementation, and proceed with 
highest-modularity partitions from 1000 runs with different seeds. Louvain detects 13 
(11) communities in the Copenhagen network, 20 (17) communities in the Uni email 
network, 17 (12) communities in the Ego Facebook network, and 13 (9) communities in 
the Facebook organizations network, where the numbers in parenthesis are the effective 
numbers of communities. Overall, we find that map equation centrality with unrecorded 

Fig. 6 Imprecision of map equation centrality, modularity vitality, community hub-bridge, community-based 
centrality, degree centrality, and betweenness centrality for identifying top spreaders in eight empirical 
networks. The curves show imprecision as a function of the fraction of top spreaders that are selected. 
A lower imprecision corresponds to more accurately identifying the top spreaders as determined with 
an SIR simulation. Community structures are identified with Infomap; solid lines use the unrecorded link 
teleportation flow model, dashed lines use recorded node teleportation. Degree and betweenness centrality 
do not rely on communities



Page 16 of 24Blöcker et al. Applied Network Science            (2022) 7:56 

link teleportation and modularity vitality perform similar to before (Fig. 7a–d). Whether 
community hub-bridge and community-based centrality perform better or worse 
depends on the network, and map equation centrality with recorded node teleportation 
performs worse than before.

To summarise, we found that none of the tested centrality scores outperforms all other 
scores in all networks, but none of the scores performed worst in all cases either.

Distribution of influential nodes

To understand why unrecorded link teleportation facilitates more accurate identifi-
cation of top spreaders in the SIR case while recorded node teleportation works bet-
ter for the linear threshold model, we analyse how the top-ranked nodes are distributed 
across modules. Let M be a partition of the nodes into modules, m ∈ M be a module, 
and let S be the set of selected nodes by some centrality measure. Then, |m∩S|

|S|  is the 
fraction of selected nodes in module m ; we calculate the perplexity for S as 2H(S) where 
H(S) = −

∑

m∈M
|m∩S|
|S| log2

|m∩S|
|S|  . The perplexity corresponds to the effective number of 

same-size modules across which the selected nodes are distributed uniformly. That is, 
a higher perplexity means that the selected nodes are more spread out across modules.

The nodes selected by map equation centrality are more spread out with standard Pag-
eRank flow than with unrecorded link teleportation. This is because PageRank with a 
teleportation rate of r assigns an r-fraction of the flow to nodes uniformly, resulting in at 
least a flow of rn per node in a network with n nodes. Here, we used r = 0.15 . For modu-
larity vitality, community hub-bridge, and community-based centrality, the difference 

Fig. 7 Imprecision of map equation centrality, modularity vitality, community hub-bridge, community-based 
centrality, degree centrality, and betweenness centrality in four empirical networks based on partitions 
inferred thorugh modularity maximisation with the Louvain algorithm
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between link and node teleportation is less pronounced, and in some settings even 
reversed. Overall, community hub-bridge and community-based centrality have lower 
perplexity, selecting nodes that are less spread out across modules. Map equation cen-
trality and modularity vitality have substantially higher perplexity, spreading out the 
selected nodes more across communities (Fig. 8a–l). To perform well in the SIR case, a 
centrality measure should select high-degree nodes because they have a higher oppor-
tunity to infect other nodes. Conversely, under the linear threshold model, it is more 
important to spread out the selected nodes across tightly-knit communities to reach a 
high activation size, or high-density communities will stop the activation of nodes (Mor-
ris 2000).

Conclusion
We have studied node importance from a community-detection perspective within the 
map equation framework and analytically derived a community-aware centrality score. Our 
score exploits modular network structure, is agnostic to the chosen flow model, and assigns 
centrality scores to nodes based on their community embedding; to determine a node’s 
centrality, it suffices to consider those nodes that belong to the same community. In con-
trast, traditional centrality measures typically neglect local network structure and rely on 
node features or global patterns to determine node importance instead. Community-aware 
centrality measures are often defined in an ad-hoc way, disconnected from the assumptions 
made by community-detection methods. In contrast, map equation centrality is true to the 

Fig. 8 Perplexity for the distribution of selected nodes as a function of the fraction of selected top spreaders 
for map equation centrality, modularity vitality, community hub-bridge, community-based centrality, degree 
centrality, and betweenness centrality in twelve empirical networks. Community structures are identified 
with Infomap; solid lines use the unrecorded link teleportation flow model, dashed lines use recorded node 
teleportation
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map equation. We have highlighted how map equation centrality discerns nodes indistin-
guishable to global centrality measures using a synthetic network. On a set of twelve real-
world networks, map equation centrality often performs better than baseline methods in 
identifying influential nodes.

Appendix
Generalisation for sets of nodes

We generalise map equation centrality and derive the expression in Eq. 12 that can be used 
to calculate the combined centrality for sets of nodes U. We follow the same approach as 
before, that is, we first derive an expression for the expected per-step codelength when 
silencing all nodes in U while using the old coding scheme; then we derive an expression for 
for the expected per-step codelength when designing a new coding scheme that does not 
assign codewords to nodes in U to start with.

Let G = (V ,E, δ) be a network with nodes V, links E, weights δ , U ⊆ V  be a set of 
nodes, and pU =

∑

u∈U pu be the visit rate sum of nodes in U. Further, for a module m , let 
pm∩U =

∑

u∈m∩U pu be the visit rate sum of nodes that are members in m and in U, and let 
Pm∩U = {pu |u ∈ m ∩U} be their set of visit rates.

We begin with the one-level partition M1 and obtain the expected per-step codelength 
for describing a random walk with nodes in U silenced while using the old coding scheme. 
Removing the silenced nodes from the summation in Eq. 1, we get

We obtain the codelength for a new coding scheme that does not assign codewords to 
nodes in U by re-normalising the visit rates for the remaining nodes with 1− pU ,

The difference between Eqs. 13 and 14 is the joint map equation centrality score of the 
nodes in U under M1,

For two-level partitions, we begin by rewriting the map equation (Eq. 2) to distinguish 
explicitly between modules that have an overlap with U and those that do not,

The codelength for describing a random walk in partition M with nodes in U silenced 
when using the old coding scheme is

(13)LU (G,M1) = −
∑

v∈V \U

pv log2 pv .

(14)LU∗(G,M1) = −
∑

v∈V \U

pv log2
pv

1− pU
.

(15)
�(G,M1,U) = LU (G,M1)− LU∗(G,M1)

= −(1− pU ) log2 (1− pU ).

L (G,M) =
index level

qH (Q) +

no overlap with U
∑

m∈M
m∩U=∅

pmH (Pm)−
overlap with U

∑

m∈M
m∩U �=∅

∑

p∈Pm

p log2
p

pm
. (16)
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With a new code that does not assign codewords to nodes in U and that normalises 
accordingly, the codelength is

The difference between Eqs. 17 and 18 is the joint map equation centrality of the nodes 
in U under M,

Descriptions of linear threshold model results

In the Facebook friends network, initially all measures perform similarly well. Modu-
larity vitality, community hub-bridge, and community-based centrality outperform map 
equation centrality between x = 0.02 and 0.04; beyond x = 0.04 , map equation cen-
trality performs best, followed by betweenness centrality, degree centrality, modularity 
vitality, community-based centrality, and community hub-bridge (Fig. 5a).

In the Copenhagen network, up to x = 0.03 , all scores perform equally well, between 
x = 0.03 and x = 0.05 , community hub-bridge and community-based centrality perform 
slightly better than map equation centrality and modularity vitality. Beyond x = 0.05 and 
up to x = 0.13 , map equation centrality performs best; for x ≥ 0.13 , modularity vitality 
performs best and reaches an activation size of 1 (Fig. 5b).

In the Uni email network, initially, community hub-bridge and community-based cen-
trality slightly outperform the other measures. Then, at x = 0.06 , map equation central-
ity and degree centrality reach an activation size of nearly 1, followed by betweenness 
centrality at x = 0.07 , modularity vitality at x = 0.09 , community-based centrality at 
x = 0.12 , and community hub-bridge at x = 0.15 (Fig. 5c).

In the Polblogs network, community-based centrality, community hub-bridge, and 
betweenness centrality perform best, followed by degree centrality, modularity vitality, 
and finally map equation centrality (Fig. 5d).

In the Interactome yeast network, map equation centrality performs best, followed by 
degree centrality, and the remaining measures which have similar performance in this 
case (Fig. 5e).

In the Ego Facebook network, all four measures have similar performance up to 
x = 0.05 , beyond which map equation centrality dominates, followed by betweenness 
centrality, community-based centrality and community hub-bridge, and modularity 
vitality (Fig. 5f ).

LU (G,M) =
index level

qH (Q) +

no overlap with U
∑

m∈M
m∩U=∅

pmH (Pm)−

overlap with U

∑

m∈M
m∩U �=∅

∑

p∈Pm\Pm∩U

p log2
p

pm
. (17)

LU∗ (G,M) =
index level

qH (Q) +

no overlap with U
∑

m∈M
m∩U=∅

pmH (Pm) −

overlap with U

∑

m∈M
m∩S �=∅

∑

p∈Pm\Pm∩U

p log2
p

pm − pm∩U
. (18)

(19)
�(G,M,U) = LU (G,M)− LU∗(G,M)

= −
∑

m∈M,m∩U �=∅

(pm − pm∩U ) log2
pm − pm∩U

pm
.
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In the Power network, map equation centrality performs best, followed by degree 
centrality, modularity vitality, community-based centrality, community hub-bridge, 
and betweenness centrality (Fig. 5g).

In the Facebook organizations network, community hub-bridge and community-
based centrality perform best up to x = 0.05 . Beyond that, map equation central-
ity performs best; modularity vitality, betweenness centrality, degree centrality, and 
community-based centrality have similar performance, and community hub-bridge 
performs weakest with some distance. From x = 0.14 , betweenness centrality per-
forms slightly better than map equation centrality (Fig. 5h).

In the Physics collaborations map equation centrality outperforms the other meas-
ures over the whole tested range, followed by betweenness centrality, degree central-
ity, modularity vitality, and community hub-bridge and community-based centrality 
(Fig. 5i).

In the Google network, betweenness centrality performs best while map equation 
centrality performs weakest in this scenario. The remaining measures have similar 
performance, but none clearly wins against the others (Fig. 5j).

In the PGP network, betweenness centrality outperforms the remaining measures, 
followed by map equation centrality, degree centrality, modularity vitality, community 
hub-bridge, and community-based centrality (Fig. 5k).

Finally, in the Facebook wall network, initially, map equation centrality based on 
unrecorded link teleportation and degree centrality perform best, followed by com-
munity-based centrality, community hub-bridge, betweenness centrality, and modu-
larity vitality. Beyond x = 0.04 , map map equation centrality with recorded node 
teleporation and betweenness centrality perform best, followed by modularity vitality, 
degree centrality, community hub-bridge, and community-based centrality (Fig. 5l).

Descriptions of the SIR model results

In the Facebook friends network, map equation centrality, degree centrality, commu-
nity hub-bridge, and community-based centrality are nearly tied with an imprecision 
up to approximately 0.05, identifying the top spreaders accurately. Modularity vitality 
initially performs similarly well, but achieves imprecision values between around 0.2 
and 0.3 beyond x = 0.05 (Fig. 6a).

In the Copenhagen network, map equation centrality and degree centrality outper-
form the other measures. Community-based centrality performs slightly worse than 
map equation centrality, followed by community hub-bridge, betweenness centrality, 
and then modularity vitality (Fig. 6b).

In the Uni email network, map equation centrality and degree centrality outperform 
the other measures across the tested range of x-values, followed by community-based 
centrality, betweenness centrality, and modularity vitality and community hub-bridge, 
the latter two performing similarly in this scenario (Fig. 6c).

In the Polblogs network, community-based centrality and community hub-bridge per-
form best, followed by degree and betweenness centrality, modularity vitality, and finally 
map equation centrality (Fig. 6d).
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In the Interactome yeast network, all measures perform similarly well, while commu-
nity-based centrality and map equation centrality slightly outperform the rest (Fig. 6e).

In the Ego Facebook network, map equation centrality and degree centrality again 
outperform the other measures. Initially and up to x ≈ 0.08 , modularity vitality, com-
munity hub-bridge, and community-based centrality show similar performance. Beyond 
x ≈ 0.08 , modularity vitality’s performance remains stable at an imprecision of around 
0.2 while community hub-bridge and community-based centrality improve and perform 
as well as map equation centrality at x ≈ 0.2 . Map equation centrality based on recorded 
node teleportation and betweenness centrality perform substantially worse than the 
other measures in this scenario with imprecision values roughly between 0.9 down to 0.5 
(Fig. 6f ).

In the Power network, community-based centrality performs best, followed by map 
equation centrality, community hub-bridge, degree centrality, modularity vitality, and 
finally betweenness centrality (Fig. 6g).

In the Facebook organizations network, map equation centrality and degree centrality 
outperform the other measures with a stable imprecision around 0.1. Modularity vitality 
performs second-best, with increasing imprecision as x increases, followed by between-
ness centrality, community-based centrality, and community hub-bridge (Fig. 6h).

In the Physics collaborations network, modularity vitality initially performs best, but 
with slightly decreasing performance as x increases. Map equation centrality, degree 
centrality, community hub-bridge, and community-based centrality initially perform 
similarly, all with an imprecision of around 0.35, but outperform modularity vitality 
beyond x ≈ 0.05 , with community-based centrality performing best (Fig. 6i).

In the Google network, up to x = 0.03 , community hub-bride performs best. Beyond 
that, community-based centrality performs best, followed by degree centrality, commu-
nity hub-bridge, modularity vitality, map equation centrality, and finally betweenness 
centrality (Fig. 6j).

In the PGP network, community-based centrality outperforms the other measures, 
followed by degree centrality. Community hub-bridge performs third-best, followed by 
map equation centrality, betweenness centrality, and modularity vitality. In this scenario, 
node teleportation-based map equation centrality performs nearly identical to modu-
larity vitality. Beyond x ≈ 0.05 , community hub-bridge and map equation centrality are 
nearly tied (Fig. 6k).

Finally, in the Facebook wall network, community-based centrality outperforms the 
other measures, followed by degree centrality, community hub-bridge, map equation 
centrality, modularity vitality, and betweenness centrality. Here, map equation central-
ity when using recorded node teleportation performs considerably worse compared to 
unrecorded link teleportation (Fig. 6l).

Further results for the linear threshold model

Further results for the linear threshold model with thresholds t ′ = 0.4 and t ′′ = 0.6 are 
shown in Figs. 9 and 10, respectively.
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Fig. 9 Activation size for map equation centrality (MEC), modularity vitality (MV), community hub-bridge 
(CHB), community-based centrality (CBC), degree centrality (DC), and betweenness centrality (BC) in twelve 
empirical networks under the linear threshold model with threshold t′ = 0.4 . Community structures are 
identified with Infomap; solid lines use the unrecorded link teleportation flow model, dashed lines use 
recorded node teleportation

Fig. 10 Activation size for map equation centrality (MEC), modularity vitality (MV), community hub-bridge 
(CHB), community-based centrality (CBC), degree centrality (DC), and betweenness centrality (BC) in twelve 
empirical networks under the linear threshold model with threshold t′′ = 0.6 . Community structures are 
identified with Infomap; solid lines use the unrecorded link teleportation flow model, dashed lines use 
recorded node teleportation
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