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1  | INTRODUC TION

Understanding the interplay between the structure and dynamics 
of complex ecological systems is at the heart of network ecology. 
Partitioning a network into modules composed of nodes more tightly 
connected to each other than to other nodes is a leading example. 
Modules are a topological description of realised interaction pat-
terns. It has been shown that a modular structure can make ecolog-
ical communities locally stable (Grilli et  al., 2016), increase species 
persistence (Stouffer & Bascompte, 2011), serve as a signature for 
evolutionary processes (Pilosof et  al.,  2019) and slow down the 
spread of perturbations (see Gilarranz et al. 2017 for experimental 
evidence).

There are three main ways to detect modules in networks 
(Rosvall et  al.,  2018): (a) By maximising the internal density of links 
within groups of nodes (Newman & Girvan, 2004; Olesen et al., 2007; 
Thébault,  2013); (b) by identifying structurally equivalent groups in 
which nodes connect to others with equal probability, typically stud-
ied using stochastic-block models (Holland et al., 1983), known as the 
‘group model’ in ecology (Allesina & Pascual, 2009) and (c) by optimally 
describing modular flows on networks (Rosvall et al., 2010; Rosvall & 
Bergstrom, 2008) (Supporting Information Text 1). These approaches 
have been developed for different purposes, with different mathe-
matical functions and algorithms to detect an ‘optimal’ partition of a 
network. Therefore, there is no single ‘true’ network partition (Peel 
et al., 2017). Instead, the method applied should match the question 
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Abstract
1.	 Analysing how species interact in modules is a fundamental problem in network 

ecology. Theory shows that a modular network structure can reveal underlying 
dynamic ecological and evolutionary processes, influence dynamics that operate 
on the network and affect the stability of the ecological system.

2.	 Although many ecological networks describe flows, such as biomass flows in food 
webs or disease transmission, most modularity analyses have ignored network flows, 
which can hinder our understanding of the interplay between structure and dynamics.

3.	 Here we present Infomap, an established method based on network flows to the 
field of ecological networks. Infomap is a flexible tool that can identify modules 
in virtually any type of ecological network and is particularly useful for directed, 
weighted and multilayer networks. We illustrate how Infomap works on all these 
network types. We also provide a fully documented repository with additional 
ecological examples. Finally, to help researchers to analyse their networks with 
Infomap, we introduce the open-source R package infomapecology.

4.	 Analysing flow-based modularity is useful across ecology and transcends to other 
biological and non-biological disciplines. A dynamic approach for detecting modu-
lar structure has strong potential to provide new insights into the organisation of 
ecological networks.
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(Ghasemian et al., 2019; Rosvall et al., 2018). For example, many eco-
logical systems describe flows on networks, including biomass flow 
in food webs (Baird & Ulanowicz,  1989), movement of individuals 
between patches (Hanski & Gilpin, 1991) and gene flow among indi-
viduals and populations (Fletcher Jr et al., 2013). In such cases, under-
standing how network flows organise in modules can be more relevant 
to the system at hand than maximising internal interaction density.

To date, maximising variants of Newman–Girvan's combinatorial 
modularity score Q is the dominant approach in ecology (reviewed in 
Thébault (2013)). While this method undoubtedly has provided many 
insights, it is not designed to capture network flows. Also, modular-
ity maximisation methods for various applications are scattered in 
different software implementations. For example, the R package bi-
partite (Dormann et al., 2009) has an implementation for modularity 
maximisation in bipartite weighted and unweighted networks, while 
Netcarto (Guimerà & Nunes Amaral, 2005) is an implementation for 
unipartite, undirected networks. To fill these conceptual and techni-
cal gaps, we present an established method for detecting flow-based 
modules called Infomap.

Infomap has several advantages for ecological research. First, it 
can be applied to many types of networks, including directed/un-
directed, weighted/unweighted, unipartite/bipartite and multilayer 
networks. Second, it is computationally effective, supporting stud-
ies of large networks or comparing observed networks with many 
randomised networks. Third, it can incorporate node attributes by 
explicitly considering information such as taxonomy for the parti-
tioning into modules. Fourth, it can detect hierarchical structures of 
modules within modules. Finally, Infomap has online documentation 
and an active development team that has made it user-friendly and 
flexible. These advantages make Infomap a highly accessible tool that 
can be applied to virtually any kind of ecological system. Moreover, 
Infomap has been thoroughly described mathematically and com-
putationally (Rosvall et al., 2010, 2014; Rosvall & Bergstrom, 2008, 
2011) and has already been benchmarked against other methods 
(Aldecoa & Marín, 2013; Lancichinetti & Fortunato, 2009), providing 
a sound theoretical and applied understanding of the method.

Despite these advantages, Infomap has only been used in a 
handful of ecological studies (Bernardo-Madrid et al., 2019; Pilosof 
et al., 2019, 2020). Therefore, our goal here is twofold: (a) introduce 
Infomap to ecologists with guidelines on how to apply it to particular 
problems and (b) help users analyse their networks with the dedi-
cated R package infomapecology we have developed—a one-stop-
shop that also integrates with other R packages commonly used by 
ecologists such as bipartite and igraph.

2  | INFOMAP AND THE MAP EQUATION 
OBJEC TIVE FUNC TION

2.1 | General approach to network partitioning

To understand how Infomap works, it is helpful first to under-
stand the general approach for modularity analysis (Supporting 

Information Text 2). A particular assignment of the nodes into mod-
ules is called a network partition. As even small networks can have an 
enormous number of possible partitions, search algorithms measure 
the quality of a given partition with an objective function. The algo-
rithms then make a small change in the partition, such as moving a 
node from one module to another, and test whether the value of the 
objective function improves. Modularity analysis algorithms differ in 
the search algorithms and objective functions they apply.

Infomap optimises the objective function known as the map 
equation using a modified and extended Louvain search algorithm 
(Blondel et al., 2008). Specifically, the algorithm finds the partition 
that best compresses a description of flows on the network. The 
network flows are modelled by a random walker or observed empir-
ical flows if available (Supporting Information Text 3). The random 
walker moves across nodes in a way that depends on the direction 
and weight of the links, and tends to stay longer in dense areas that 
then represent modules. For a given partition of the network, there 
is an associated information cost, measured in bits, for describing 
the movements of the random walker. The map equation converts 
the flow rates within and between the modules to an information-
theoretic modular description measure of the random walker's 
movements on the network. Minimising the map equation over pos-
sible network partitions corresponds to detecting the most modular 
structure possible in the dynamics on the network.

2.2 | The map equation: Linking structure and 
information

To calculate the map equation, Infomap uses node and link rates, 
which are calculated based on link direction and weights. For exam-
ple, in the schematic network in Figure 1a, there are 14 directed links 
of weight of 1, resulting in total incoming link weight of 14. Therefore, 
each directed link carries flows of link visit rate 1/14. These can also 
be viewed as seven undirected links (flow equals link weights in un-
directed networks). Nodes with two incoming links have a node visit 
rate of 2/14, and nodes with three links have a node visit rate of 
3/14. These rates are included in the so-called ‘module codebook’. 
In the one-module solution, all the nodes belong to a single mod-
ule and, therefore, to a single module codebook (Figure 1c). In the 
two-module solution (Figure 1b), there are two module codebooks 
(Figure 1d). To describe a random walk in the latter case, it is also 
necessary to consider the rates of entering and exiting each mod-
ule using the module entry rate and the module exit rate, respectively 
(which are equal for undirected networks). Module entry rates are 
encoded in an ‘index codebook’. In the two-module solution, these 
events are ‘enter green’ and ‘enter orange’, which both occur at rate 
1/14. The rates of exiting modules are encoded within the module 
codebooks (Figure 1d).

The map equation uses Shannon's source coding theorem 
(Shannon, 1948) to convert the rates encoded in the codebooks to 
information measured in bits. Specifically, given a network partition 
M, we can calculate the minimum amount of information needed 
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to describe an average movement length of a random walker. This 
quantity L is the entropy H of the events encoded in the codebooks, 
weighted by the use rate of each codebook (equations in Figure 1c,d). 
Summing the terms for the index codebook and the module code-
books, we obtain the map equation (Rosvall et al., 2010; Rosvall & 
Bergstrom, 2008),

where H (�) and H
(

�i
)

 are the entropy values of the index codebook 
and the codebook of module i, respectively. These entropy terms are 
weighted by the rate at which the codebooks are used. The index 
codebook is weighted by the rate of entering any module, q↶, and each 
module codebook i is weighted by its within-module flow, pi

↻
, which 

includes the node-visit rates and the exit rate in module i. For the ex-
amples in Figure  1, L

(

M1

)

≈ 2.56 for the one-module solution and 
L
(

M2

)

≈ 2.32 for the two-module solution. The two-module solution 
requires fewer bits and hence better captures the modular structure 
of the network.

In practice, Infomap can use either real measured flows or es-
timates of flows (Supporting Information Text 3.2). In the latter and 

more typical case, Infomap derives link and node visit rates using an 
iterative process akin to the PageRank algorithm (Brin & Page, 1998). 
First, each node receives an equal amount of flow volume. Then, it-
eratively until all node visit rates are stable, each node distributes all 
its flow volume to its neighbours proportionally to the outgoing link 
weights. We note that PageRank is only used for directed networks be-
cause it is superfluous for undirected networks. A comprehensive de-
scription on flow models are found in the Supplementary Information 
(Supporting Information Text 3.2) and in Rosvall and Bergstrom (2008), 
Rosvall et al. (2010), Bohlin et al. (2014) and De Domenico et al. (2015).

2.3 | Extension to multilayer networks

In multilayer networks, nodes representing observable entities such 
as species are called physical nodes. Realisations of physical nodes in 
a given layer—for example, in different time points, patches or inter-
action types—are called state nodes. The random walker moves from 
state node to state node within and across the layers. However, the 
encoded position always refers to the physical node (see dynamic vis-
ualisation: https://www.mapeq​uation.org/apps/multi​layer​-netwo​rk/
index.html). This approach provides two advantages. First, it enables 

(1)L (M) = q↶H (�) +

m
∑

i=1

pi
↻
H
(

�
i
)

,

F I G U R E  1   Basics of the map equation. The example is for a schematic network with 14 directional links, in which the total rate of flow is 
14. (a) A one-module solution. The node visit rates written besides each node are the number of incoming links. (b) A two-module solution. 
Each module is represented by a different colour. The purple arrow heads illustrate that these links are considered as module entry links. 
(c) A single module codebook for a one-module solution. Each block represents a node, with width proportional to the node's visit rate. 
(d) Three codebooks for a two-module solution. An index codebook to encode module enter rates (purple codebook), and two module 
codebooks (green and orange) for node visit rates of each module. The total rate of use of a codebook is the sum of its rates (indicated below 
the codebook). In (c) and (d), for each solution, we calculate L, the value of the map equation, which is the entropy of the use rates within 
each codebook, weighted by the use rates of the codebooks. An expanded explanation that includes the relationship between flow rates and 
information theory are found in Figure S1
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a physical node to be assigned to different modules in different lay-
ers. From an ecological perspective, this is crucial as a certain species 
can have different functions in different layers. For example, there 
is a strong spatial and temporal variation in plant–pollinator interac-
tions (Olesen et al., 2008; Trøjelsgaard et al., 2015) Second, it enables 
to model the coupling between layers without interlayer links. This 
feature is particularly useful in ecology because interlayer links are 
often challenging to measure empirically (Hutchinson et al., 2018). If 
interlayer links are not provided, the random walker ‘relaxes’ to the 
current physical node in a random layer at a ‘relax rate’ r, without 
recording this movement. By gradually tuning the relax rate, it is pos-
sible to explore the relative contribution of intra- and interlayer links 
to the structure (Figure 5 and Supporting Information Text 3.4).

3  | IMPLEMENTATION, AVAIL ABILIT Y 
AND CODE

Full documentation of Infomap, including tutorials, instructions and 
visualisation tools, is available at https://www.mapeq​uation.org/
infom​ap/. Detailed installation instructions for infomap and info-
mapecology, detailed descriptions of input/output formats, source 
code of infomapecology and the code used to produce the analy-
ses in this paper are available at https://ecolo​gical​-compl​exity​-lab.
github.io/infom​ap_ecolo​gy_packa​ge/. In addition, each function in 
infomapecology has examples in its description, accessible via R's 
help (e.g. ?create_monolayer_object).

3.1 | General approach

When using infomapecology, the first step is to convert the input 
data to an object of class monolayer or multilayer. The monolayer 
class is an R list with information about the network (e.g. bipartite, 
directed), a list of nodes and their attributes, and network represen-
tations as a matrix, an edge list and an igraph object. With multiple 
data structures, it is easy to streamline and standardise the work-
flow with other R packages. As ecological networks are typically 
relatively small, using multiple data structures have limited compu-
tational consequences. If the network is large, it is straightforward 
to extract only a single data structure or use sparse matrices. A mon-
olayer object is created using the function create_monolayer_object, 
which as input can take matrices, edge lists and igraph objects, and 
can also incorporate node attributes. With a created monolayer ob-
ject, Infomap is ready to run. A basic example:

# Use the memmott1999 bipartite network represented as a matrix 
from package bipartite
monolayer_network <- create_monolayer_object (memmott1999, 

bipartite = T, directed = F, group_names = c('Animals', 'Plants'))

# Run Infomap
modularity_results <- run_infomap_monolayer (monolayer_network,  

infomap_executable = 'Infomap', flow_model = 'undirected', si-
lent = T, trials = 20, two_level = T, seed = 123)

For multilayer networks, the input must be in the form of an edge 
list. The exact format depends on the existence of interlayer edges. A 
data frame with nodes is also necessary. It is also possible to provide 
information on each layer (e.g. coordinates). Infomapecology will stan-
dardise the input and produce a multilayer object with intralayer and 
interlayer edges, and information on nodes and layers. A multilayer 
network example:

# Create a multilayer object with the Siberia data set provided with 
the package
NEE2017 <- create_multilayer_object (extended = siberia1982_7_

links, nodes = siberia1982_7_nodes, intra_output_extended = T, 
inter_output_extended = T)

# Run infomap
NEE2017_modules <- run_infomap_multilayer (M = NEE2017, 

relax = F, flow_model = 'directed', silent = T, trials = 100, 
seed = 497294, temporal_network = T)

For monolayer and multilayer networks, the results are stored in 
objects of class infomap_monolayer and infomap_multilayer, respec-
tively, which contain the call for Infomap, the value of L, the number 
of modules and a data frame with the module affiliation of nodes.

3.2 | Use cases

Thanks to its flexibility, Infomap can find modules in many types of 
networks. Here we exemplify with directed, weighted networks, 
which are adequate for representing flows, and multilayer networks 
for analysing modular flows over time. We present other types of 
networks, including bipartite networks, and hierarchical modularity 
in the Extended Use Cases (Supporting Information Text 4). The goal 
of all these use cases is to demonstrate the capacity and flexibility 
of the framework and to provide general guidelines. We aim to help 
users analyse their networks rather than to provide full interpreta-
tions of the analysed networks.

3.3 | Weighted and directed networks

To demonstrate the usefulness of Infomap in identifying flows in 
weighted networks, we use data from Gilarranz et al.  (2017), who 
built an experimental network of 20 cups (patches) connected 
by tubes and partitioned into four modules (Figure  2). Gilarranz 
et  al.  (2017) allowed springtails to disperse freely between the 
patches and showed that the effects of perturbation to a particular 
node in the network—leading to local extinction of springtails in the 
patch—are primarily contained within the cup's module. Flow mod-
ules can provide an adequate description of this dispersal system.

https://www.mapequation.org/infomap/
https://www.mapequation.org/infomap/
https://ecological-complexity-lab.github.io/infomap_ecology_package/
https://ecological-complexity-lab.github.io/infomap_ecology_package/
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When we applied Infomap and Newman–Girvan's modularity 
score Q to the original, unweighted and undirected network (spring-
tails can move in both directions with uniform constraints on move-
ment), both methods partitioned the network into the same four 

experimentally designed modules. However, when we computation-
ally increased the connectivity between two of the designed modules 
in the network, Infomap identified three modules by merging the two 
original modules as expected. In comparison, Q still found the same 
four modules (Figure  2). If we were to repeat the experiment with 
increased link weights by using wider tubes, we would expect local 
extinctions to be confined to the 10 nodes within the new module. 
This ecological example with network flows indicates that Infomap 
is more sensitive to changes in flows than Q (Table S1). Lancichinetti 
and Fortunato (2009) and Aldecoa and Marín (2013) show quantita-
tive comparisons of Infomap and Newman–Girvan's modularity score 
optimised with the Louvain method, and Rosvall et al. (2018) illustrate 
how the flow-based map equation and the combinatorial modularity 
score highlight different aspects of networks.

As an example of a directed network, we use data from Tur 
et  al.  (2016), who measured directed flows of pollen grains (links) in 
south Andean communities, at three elevations. In their networks, 
nodes are plant species and links are directed from species i to j when 
pollen of species i was detected on stigmas of species j (i is the donor 
species and j is the receptor). The weights of the links are the number 
of pollen grains identified. Links between nodes represent pollen move-
ment between species (heterospecific pollination) while self-links rep-
resent conspecific pollination. Heterospecific pollination occurs when 
pollinators visit plants of different species and is a cost on reproductive 
success (see more in Tur et al. (2016)). Because the relative flow of self 
and non-self pollen (con- vs. hetero-specific pollination) has ecological 
and evolutionary consequences, identifying higher-level modules of 
pollen flow and the roles of particular species in dominating this flow 
can provide a new perspective into the functioning of this community.

We mapped the pollen movement with and without self-links and 
found that the structure was considerably different. With self-links, 
Infomap identified 13 modules, and without self-links 7 (Figure 3a,b). 

F I G U R E  2   Comparing Infomap to Q in weighted network. 
The network is the one designed by Gilarranz et al. (2017) to 
have four modules, depicted by node colours. Edges within and 
between modules are coloured by either module colour or black, 
respectively, and their weight is 1. We computationally increased 
the weight of two edges between the green and light blue modules 
(thick black lines) from 1 to 4 in increments of 0.1. This analysis 
showed that Infomap has a threshold (2.1) above which the two 
strongly connected blue and green modules merge into a single 
module (depicted by a dashed ellipse), while Q considers them 
as four modules consistently as it only uses the unweighted 
information

F I G U R E  3   Modularity of a pollen movement network with and without self links. (a) and (b) The network is that of elevation 2000 from 
Tur et al. (2016). Link width (log-transformed) depicts the mean number of grains of a donor found on a recipient (arrow direction). Node 
background depicts the affiliation of nodes to modules when self-links are not included or included. The position of the nodes in the two 
networks is identical. It is clear that nodes that are grouped in the same module without self-loops are not grouped together when loops are 
included. For example, the six red nodes in panel (b) are grouped to six different groups in panel (a). (c) Comparison of the relative outgoing 
flow of nodes with and without self-links. The diagonal dashed line represents an equal contribution to flow when self-links are included or 
not. Plants that are above or below this line have a discrepancy in their contribution to flow, and therefore, structure

(b)(a) (c)
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The increased number of modules with self-loops results from high con-
specific pollen flows compared with heterospecific pollination. Because 
Infomap also quantifies the relative amount of flow at each node, this 
comparison allows us to look into the roles of individual species. For ex-
ample, plants that have a large flow of conspecific pollination, but its 
pollen is also found on many other plants (outgoing flow) likely effect 
pollination success of other plants via generalist pollinators that visit 
them (Figure 3c).

3.4 | Temporal multilayer network

There are many types of multilayer networks in ecological systems 
and the ability of Infomap to integrate layers of different kinds 
opens up a range of possibilities for their analysis. Per our goal in 
this paper, we present an example of a temporal multilayer network, 
which represents flows over time. We use a host–parasite network 
recorded over 6 years, in which both interlayer and intralayer links 
are quantified (Pilosof et al. 2017). The dataset is included in info-
mapecology and we analyse it in two ways: First, we analysed the 
network using the existing interlayer links. We found that 47.4% of 
the modules persisted for all six layers while 7.89% appeared in only 
two layers. No module appeared in only a single layer (Figure 4a). 
This indicates that the grouping of species has a strong temporal 
component (although we cannot rule out biases due to uneven 
sampling across time). A second finding is that affiliation of species 

to modules is flexible: Infomap assigned 21.8% of the species to at 
least two different modules during the 6 years. Infomap can assign 
a species to one module at one time-point (layer), and a to different 
module in the next layer because different state nodes represent 
the same species in different layers (Figure 4b). Biologically, flex-
ibility in module affiliation in this system may capture interannual 
variation in host and parasite population dynamics.

To illustrate Infomap's capabilities to model interlayer links, in 
a second analysis, we ignored the interlayer links and used global 
relax rates to mimic the typical situation in which interlayer links 
have not been measured. We limited the relaxation of the random 
walker between layers to one layer forward, with no backwards re-
laxation because time has a direction. By systematically changing 
the value of r, we effectively examined the effect of increasing in-
terlayer connectivity on the structure. The higher the relax rate, the 
more frequent the movement of the random walker between layers, 
tightening the connection between layers and potentially affecting 
structure (e.g. creating modules that persist for longer times). While 
we do detect variation in the number of modules, module compo-
sition and persistence, this variation is not considerable (Figure 5). 
Nevertheless, these results are specific for this network, and we 
recommend this kind of sensitivity analysis to choose the appro-
priate relax rate that best expresses the dynamics of the network. 
Moreover, the precise definition of interlayer links or the use of relax 
rates should be one of the primary considerations when analysing 
multilayer networks (Hutchinson et al., 2018; Pilosof et al., 2017).

F I G U R E  4   Modular structure of a temporal network. (a) The persistence of each module in time. Colours depict module size: the total 
number of species in each module. (b) An alluvial diagram for the flow of species from different modules among layers. Species are clustered 
in modules, presented in coloured blocks. Each line represents a species, and line colours correspond to the module in which the species 
originates
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4  | CONCLUSIONS

Modularity is a cornerstone in ecological network analysis because it 
provides a higher-level simplification of complex ecological systems. 
Other community detection methods have also shown to be highly 
relevant for ecological networks, such as stochastic block models 
which can identify species that are performing unique roles in eco-
logical communities (Sander et al., 2015). Another core concept in re-
search on ecological networks is analyses of the dynamic processes 
taking place on the network (e.g. Otto et  al.  (2007)). Nevertheless, 
the algorithms commonly used in ecology focus on network topology 
and do not specifically view modules as dynamical building blocks. 
Here, we aimed to fill this gap by introducing Infomap to ecological 
research. Modules revealed by different methods (e.g. Infomap or Q) 
will highlight different aspects of networks (Rosvall et al., 2018; Table 
S1). Infomap, which seeks to coarse-grain the system's dynamics, will 
identify flow modules, which will likely better capture structural pat-
terns important for the dynamics of the system than other methods.

Like any other method for detecting modules, Infomap cannot find a 
‘true’ partitioning of a network (Peel et al., 2017) because such partition-
ing does not exist. We advocate the application of a method appropriate 
for the question (Table S1). For example, if the goal is to detect spe-
cies that consume, or are consumed by, similar species, then stochastic 
block models (e.g. the group model (Allesina & Pascual, 2009)) are ade-
quate (Table S1). When applied to undirected networks, Infomap pro-
vides accurate solutions according to benchmark tests. Nevertheless, 
Newman–Girvan modularity may be more appropriate if the goal is to 
detect topological groups by comparing to a random expectation.

The performance and flexibility of Infomap offer several ad-
vantages. It is an efficient and fast algorithm, which is particularly 
useful when analysing a large number of networks (e.g. during hy-
pothesis testing) or large and dense networks. It is also flexible 

and handles many network types. The possibility of using node 
attributes to inform the analysis is another advantage (Supporting 
Information Text 3.5), highly relevant for ecological data, in particu-
lar as all interactions rarely are captured in the data (Jordano, 2016). 
Additional information from other systems, such as information on 
the role of species traits (Eklöf et al., 2013) and taxonomic classifi-
cation for interactions (Eklöf et al., 2012), or expert knowledge can 
then be valuable information for detecting modules.

Modularity has mainly been a theoretical construct in network 
ecology and empirical work is needed to complement the many 
generated hypotheses, including the effects on system stability 
(Dormann et  al.,  2017; Grilli et  al.,  2016). As an algorithm specifi-
cally designed for coarse-graining the dynamics and identifying flow 
modules, Infomap is highly relevant for analysing ecological net-
works (Calatayud et al., 2019; Edler et al., 2017; Pilosof et al., 2019). 
The incentives, guidelines and examples presented in this applica-
tion paper provide a springboard to take maximum advantage of em-
pirical work in network ecology.
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