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Large networks contain plentiful information about the organization of a system. The challenge is to extract useful information
buried in the structure of myriad nodes and links. Therefore, powerful tools for simplifying and highlighting important structures
in networks are essential for comprehending their organization. Such tools are called community detection methods and they are
designed to identify strongly intra-connected modules that often correspond to important functional units. Here we describe one
such method, known as the map equation, and its accompanying algorithms for �nding, evaluating, and visualizing the modular
organization of networks. The map equation framework is very �exible and can with its search algorithm Infomap, for example,
identify two-level, multi-level and overlapping organization in weighted, directed, and multiplex networks. Because the map equation
framework operates on the �ow induced by the links of a network, it naturally captures �ow of ideas and citation �ow, and is therefore
well-suited for analysis of bibliometric networks.

This tutorial builds on a book chapter to be published in Measuring scholarly impact: theory and practice (Springer).
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Figure 1 The map equation framework consists of several tools for analyzing and visualizing large networks.
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Introduction
Ever since Aristotle put the basis of natural taxonomy, classi�cation and categorization have played a central role in philo-
sophical and scienti�c investigation to organize knowledge. To keep pace with the large amount of information that we collect
in the sciences, scholars have explored di�erent ways to automatically categorize data ever since the dawn of computer and
information science.

We now live in the era of Big Data and fortunately we have several tools for classifying data from many di�erent sources,
including point clouds, images, text documents (1–3), and networks. Networks of nodes and links are simple yet powerful
representations of datasets of interactions from a great number of di�erent sources (4–6). Metabolic pathways, protein-protein
interactions, gene regulation, food webs, the Internet, the World Wide Web, social interactions, and scienti�c collaboration are
just a few examples of networked systems studied across the sciences.

In this tutorial, we will focus on classi�cation of nodes into communities and on visualization of the community structure.
In networks, communities refer to groups of nodes that are densely connected internally. Community detection in networks
is challenging, and many algorithms have been proposed in the last few years to tackle this di�cult problem. We will brie�y
mention some of the possible approaches to community detection in the next section. The rest of this chapter is devoted to
providing theoretical background to the popular and e�cient map equation framework and practical guidelines for how to
use its accompanying search algorithm Infomap (7).

The current implementation of Infomap is both fast and accurate. It can classify millions of nodes in minutes and performs
very well on synthetic data with planted communities (8, 9). Furthermore, the map equation framework is also naturally �exible
and can be straightforwardly generalized to analyze di�erent kinds of network data. For instance, Infomap not only provides
two-level, multi-level, and overlapping solutions for analyzing undirected, directed, unweighted, and weighted networks, but
also for analyzing networks that contain higher-order data, such as memory networks (10) and multiplex networks.

This tutorial is organized as follows. In Sec. 1, we provide some background on community detection in networks, in Sec. 2,
we introduce the mathematics of the map equation and the Infomap algorithm, and, in Sec. 3, we explain how to run the
software in the web applications and from the command line. We provide a collaboration network and a journal citation
network as examples. For illustration, Fig. 1 shows a number of visualizations that can be created with the applications.

1. Overview of methods
Most networks display a highly organized structure. For instance, many social systems show homophily in their network
representations: nodes with similar properties tend to form highly connected groups called communities, clusters, or modules.
For a limited number of systems, we might have some information about the classi�cation of the nodes. For example, Wikipedia
is a large network of articles connected with hyperlinks, and each article is required to belong to at least one category. In
general, however, these communities are not known a priori, and, in the few fortunate cases for which some information about
the classi�cation is available, it is often informative to integrate it with the information contained in the network structure.
Therefore, community detection is one of the most used techniques among researchers when studying networks. Moreover,
recommendation systems and network visualizations are just two of many highly useful applications of community detection.

A comprehensive overview of community-detection methods can be found in ref.(11). Here we just mention three of the
main approaches:

Null models Methods based on null models compare some measure of connectivity within groups of nodes with the
expected value in a proper null model (12–14). Communities are identi�ed as the sets of nodes for which
the connectivity deviates the most from the null model. This is the approach of modularity (12), which the
commonly used Louvain method (13) implements.

Block models Methods based on block models identify blocks of nodes (15–17) with common properties. Nodes assigned
to the same block are statistically equivalent in terms of their connectivity to nodes within the block and to
other blocks. The latent block structure is identi�ed by maximizing the likelihood of observing the empirical
data.

Flow models Methods based on �ows (7, 18) operate on the dynamics on the network rather than on its topological
structure per se. The rationale is that the prime function of networks is to capture the �ow between the
components of the real systems they represent. Accordingly, communities consist of nodes among which
�ow persists for a long time once entered. As we explain in great detail in the next section, the map equation
is a �ow-based method.

The methods’ performance can be evaluated using synthetic data generated with planted community structure, which the
algorithms are supposed to detect from the network topology only (19). By performing these benchmark tests, it has been
found that modularity optimization su�ers from a so called resolution limit (20). A method is considered to have a resolution
limit if the size of identi�ed groups depends on the size of the whole network. A consequence is that well-de�ned modules
can be merged together in large nerworks. Several solutions to this problem have been proposed. The Louvain method (13)
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provides a hierarchical tree of clusters based on local modularity maxima found during the optimization procedure. Another
approach is to use so called resolution free methods with a tunable resolution parameter (21, 22).

One advantage of using the map equation framework is that the resolution limit of its two-level formulation depends on
the total weight of links between communities rather than on the total weight of all links in the whole network (23). As a
result, the outcome of the map equation is much less likely than modularity maximization to be a�ected by the resolution
limit, without resorting to local maxima or tunable parameters. Moreover, for many networks the resolution limit vanishes
completely in the multilevel formulation of the map equation.

Hierarchical block models (17) are also less likely to be a�ected by the resolution limit, and which method to pick ultimately
depends on the particular system under study. For example, block models can also detect bipartite group structures, and are
therefore well suited for analyzing food webs. On the other hand, the map equation framework is developed to capture how
�ow spreads across a system, and is therefore well suited for analyzing weighted and directed networks that represent the
constraints on �ow in the system. Since citation networks are inherently directed, the map equation framework is a natural
choice for analyzing bibliometric networks.

Most of the algorithms mentioned above are implemented in open source software. Of particular relevance are three network
libraries that provide several of these methods in a uni�ed framework: NetworkX, graph-tool, and igraph. Although igraph
also has a basic implementation of Infomap, we recommend the most updated and feature-rich implementation introduced in
the next section and available from www.mapequation.org.

2. The map equation framework
Here we provide an overview of the map equation framework and the software for network analysis that we have developed
on top of it and made available on www.mapequation.org. First we explain the �ow-based and information-theoretic rationale
behind the mathematics of the map equation, and then we outline the algorithm implemented in Infomap for minimizing the
map equation over possible network partitions.

2.1. The map equation
The map equation is built on a �ow-based and information-theoretic foundation and was �rst introduced in ref. (7). Speci�-
cally, the map equation takes advantage of the duality between �nding community structure in networks and minimizing the
description length of a random walker’s movements on a network. That is, for a given modular partition of the network, there
is an associated information cost for describing the movements of the random walker, or of empirical �ow if available. Some
partitions give shorter and some give longer description lengths. The partition with the shortest description length is the one
that best captures the community structure of the network with respect to the dynamics on the network.

The underlying code structure of the map equation is designed such that the description can be compressed if the network
has regions in which the random walker tends to stay for a long time. Therefore, with a random walker as a proxy for real
�ow, minimizing the map equation over all possible network partitions reveals important aspects of network structure with
respect to the dynamics on the network. That is, the map equation is a direct measure of how well a given network partition
captures modular regularities in the network.

The �ow-based foundation of the map equation is well-suited for bibliometric analysis, since a random walker on a citation
network is a good model for how researchers navigate scholarly literature, reading articles and following citations. See Fig. 2
for an illustration of a random walker moving across a network. For example, with a network of citing articles, or citing articles
aggregated at the journal level, the modules identi�ed by the map equation would correspond to research �elds. Similarly,
with a network of collaborators obtained from co-authorships, the modules identi�ed by the map equation would correspond
to research groups.

To explain the machinery of the map equation, we �rst derive its general expression and then illustrate with examples
from the interactive map equation demo available on www.mapequation.org/apps/MapDemo.html (Figs. 2–4). However, we
begin with a brief review of the foundations of the map equation: the mathematics of random walkers on networks and basic
information theory. Readers not interested in the details of the map equation’s theoretical foundation can skip to Sec. 2.1.4 for
illustrative examples.

2.1.1. Dynamics on networks modeled with random walkers
The map equation measures the per-step theoretical lower limit of a modular description of a random walker on a network.
Instead of measuring the codelength of a long walk and dividing by the number of steps, it is more e�cient to derive the
codelength from the stationary distribution of the random walker on the nodes and links. In general, given a network with n
nodes and weighted directed linksWα→β between nodes α ,β ∈ 1,2,. . . ,n, the conditional probability that the random walker
steps from node α to node β is given by the relative link weight

pα→β =
Wα→β∑
βWα→β

. (1)

http://networkx.github.io/
http://graph-tool.skewed.de
http://igraph.sourceforge.net/
http://www.mapequation.org/
http://www.mapequation.org/
http://www.mapequation.org/apps/MapDemo.html
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Figure 2 The rate view of the map equation demo showing a random walker moving across the network. In the Flash application available on
www.mapequation.org/apps/MapDemo.html, the random walker moves from node to node following the directed links proportional to their weights. In
this snapshot, the random walker has taken 794 steps and visited the nodes according to the frequency distribution to the right. The currently visited node
is highlighted both in the network and in the histogram.

Assuming that the stationary distribution is given by pα , it can in principle be derived from the recursive system of equations

pα =
∑
β

pβpβ→α . (2)

However, to ensure a unique solution independent of where the random walker starts in directed networks, at a low rate τ the
random walker instead teleports to a random node. For more robust results that depend less on the teleportation parameter
τ , we most often use teleportation to a node proportional to the total weights of the links to the node (24). The stationary
distribution is then given by

pα = (1−τ )
∑
β

pβpβ→α +τ

∑
βWβ→α∑
α ,βWβ→α

. (3)

This system of equations can e�ciently be solved with the power-iteration method (25).
To make the results even more robust to the teleportation parameter τ , we use unrecorded teleportation steps and only record

steps along links (24). We capture these dynamics with an extra step without teleportation on a stationary solution similar to
Eq. (3) but with teleportation to a node proportional to the total weights of the links from the node,

p∗α = (1−τ )
∑
β

p∗βpβ→α +τ

∑
βWα→β∑
α ,βWβ→α

. (4)

http://www.mapequation.org/apps/MapDemo.html
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The unrecorded visit rates on links qβ→α and nodes pα can now be expressed:

qβ→α = p
∗
βpβ→α (5)

pα =
∑
β

qβ→α . (6)

This so called smart teleportation scheme ensures that the solution is independent of where the random walker starts in
directed networks with minimal impact on the results from the teleportation parameter. A typical value of the teleportation
rate is τ = 0.15, but in practice the clustering results show only small changes for teleportation rates in the range τ ∈ (0.05,0.95)
(24). For example, for undirected networks the results are completely independent of the teleportation rate and identical to
results given by Eq. (2). For directed networks, a teleportation rate too close to 0 gives results that depend on how the random
walker was initiated and should be avoided, but a teleportation value equal to 1 corresponds to using the link weights as the
stationary distribution. Accordingly, the unrecorded teleportation scheme also makes it possible to describe raw �ow given by
the links themselves without �rst inducing dynamics with a random walker. The Infomap code described in Sec. 2.2 can use
any of these dynamics described above, but we recommend the unrecorded teleportation scheme proportional to link weights
for most robust results.

The map equation is free from external resolution parameters. Instead the resolution scale is set by the dynamics. The
dynamics described above correspond to encoding one node visit per step of the random walker, but the code rate can be set
both higher and lower (26). A higher code rate can be achieved by adding self-links and a lower code rate can be achieved
by adding non-local links to the network (26). A higher code rate gives smaller modules because the random walker becomes
trapped in smaller regions for a longer time. The Infomap code allows to increase the code rate from the natural value of
encoding one node visit per step of the random walker.

2.1.2. Basic information theory
While the map equation gives the theoretical lower limit of a modular description of a random walker on a network, the
interactive map equation demo illustrates the description with real codewords. We use Hu�man codes (27), which are optimal
in the sense that no binary codes can come closer to the theoretical limit. However, for identifying the optimal partition of the
network, we are only interested in the compression rate and not the actual codewords. Accordingly, the Infomap algorithm
only measures the theoretical limit given by the map equation.

Shannon’s source coding theorem (28) states that the per step theoretical lower limit of describing a stream of n indepen-
dent and identically-distributed random variables is given by the entropy of the probability distribution. That is, given the
probability distribution P = {pi } such that ∑i pi = 1, the lower limit of the per-step codelength is given by

L(P) = H (P) ≡ −
∑
i

pi logpi , (7)

with the logarithm taken in base 2 to measure the codelength in bits. In other words, no codebook with codewords for the
events distributed according to P can use fewer bits on average.

Accordingly, the best compression of random walker dynamics on a network is given by the entropy rate (28)∑
α

pαH (pα→β ), (8)

which corresponds to the average codelength of specifying the next node visit given current node position, averaged over
all node positions. This coding scheme takes advantage of the independent and identically distributed next node visits given
current node position, but can not be used to take advantage of the modular structure of the network. Instead, the map equation
uses the extra constraint that the only available information from one step to the next is the currently visited module, or that the
random walk switches between modules, forcing independent and identically distributed events within and between modules.
From this assumption naturally follows a modular description that is maximally compressed by the network partition that best
represents the modular structure of the network with respect to the dynamics on the network.

2.1.3. The mathematics of the map equation
Given a network partition, the map equation speci�es the theoretical modular description length of how concisely we can
describe the trajectory of a random walker guided by the possibly weighted, directed links of the network. We use M to denote
a network partition of the network’s n nodes into m modules, with each node α assigned to a module i . We then seek to
minimize the description length L(M) given by the the map equation over possible network partitions M. Again, network
partition that gives the shortest description length best captures the community structure of the network with respect to the
dynamics on the network.

The map equation can be expressed in closed form by invoking Shannon’s source coding theorem in Eq. (7) for each of
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multiple codebooks, and by weighting them by their rate of use. Both the description length and the rate of use can be
expressed in terms of the node-visit rates pα and the module-transition rates qix and qiy at which the random walker enters
and exits each module i , respectively:

qix =
∑

α ∈j,i,β ∈i

qα→β (9)

qiy =
∑

α ∈i,β ∈j,i

qα→β . (10)

To take advantage of the modular structure of the network,m module codebooks and one index codebook are used to describe
the random walker’s movements within and between modules, respectively. Module codebook i has one codeword for each
node α ∈ i and one exit codeword. The codeword lengths are derived from the frequencies at which the random walker visits
each of the nodes in the module, pα ∈i , and exits the module, qiy. We use pi� to denote the sum of these frequencies, the
total use of codewords in module i , and Pi to denote the normalized probability distribution. Similarly, the index codebook
has codewords for module entries. The codeword lengths are derived from the set of frequencies at which the random walker
enters each module, qix. We use qx to denote the sum of these frequencies, the total use of codewords to move into modules,
and Q to denote the normalized probability distribution. We want to express average length of codewords from the index
codebook and the module codebooks weighted by their rates of use. Therefore, the map equation is

L(M) = qxH (Q)+
m∑
i=1

pi�H (Pi ). (11)

Below we explain the terms of the map equation in detail and in Figs. 3 and 4 we provide examples with Hu�man codes for
illustration.

L(M) The per-step description length for module partition M . That is, for module par-
tition M of n nodes into m modules, the lower bound of the average length of
the code describing a step of the random walker. The bottom right bit counts in
Figs. 3 and 4 show the description length for the given network partition.

qx =
∑m

i=1qix The rate at which the index codebook is used. The per-step use rate of the index
codebook is given by the total probability that the random walker enters any of
them modules. The total height of the blocks under Index codebook in Figs. 3 and
4 corresponds to this rate.

H (Q) = −
∑m

i=1 (qix/qx) log(qix/qx) The frequency-weighted average length of codewords in the index codebook.
The entropy of the relative rates to use the module codebooks measures the
smallest average codeword length that is theoretically possible. The heights of
individual blocks under Index codebook in Figs. 3 and 4 correspond to the rela-
tive rates and the codeword lengths approximately correspond to the negative
logarithm of the rates in base 2.

pi� =
∑

α ∈i pα +qiy The rate at which the module codebook i is used, which is given by the total
probability that any node in the module is visited, plus the probability that the
random walker exits the module and the exit codeword is used. This rate corre-
sponds to the total height of similarly colored blocks associated with the same
module under Module codebooks in Figs. 3 and 4.

H (Pi ) = −(qiy/pi�) log(qiy/pi�)
−
∑

α ∈i (pα /pi�) log(pα /pi�)

The frequency-weighted average length of codewords in module codebook i . The
entropy of the relative rates at which the random walker exits module i and vis-
its each node in module i measures the smallest average codeword length that
is theoretically possible. The heights of individual blocks under Module code-
books in Figs. 3 and 4 correspond to the relative rates and the codeword lengths
approximately correspond to the negative logarithm of the rates in base 2.

2.1.4. The machinery of the map equation
The map equation demo available on www.mapequation.org/apps/MapDemo.html provides an interactive interface to help
understand the machinery of the map equation. The demo has two modes accessible with the two buttons Rate view and
Code view . The purpose of the rate view shown in Fig. 2 is to illustrate how we use the random walker to induce �ow on

http://www.mapequation.org/apps/MapDemo.html
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Figure 3 The code view of the map equation demo showing the encoding of a random walker with a two-module solution. In the Flash ap-
plication available on www.mapequation.org/apps/MapDemo.html, the random walker currently visits the green node with codeword 110. The height of a
block under Index codebook represents the rate at which the random walker enters the module. The bit sequence next to each block is the associated code-
word. Similarly, the height of a block under Module codebooks represents the rate at which the random walker visits a node, or exits a module. The blocks
representing exit rates have a arrow on their right side. The text field in the bo�om le� corner shows the encoding for the previous steps of the random
walker, ending with the step on the node with codeword 110. Steps in the two modules are highlighted with green and blue, respectively, and the enter
and exit codewords are boldfaced. L(M) in the bo�om right corner shows the theoretical limit of the description length for the chosen two-module net-
work partition given by Eq. 11. LM (M) shows the limit of the Hu�man coding given by the actual codebooks and LWALK (M) shows the average per-step
description length of the realized walk in the simulation.

the network from the constraints set by the link structure. The purpose of the code view shown in Figs. 3 and 4 is to illustrate
the duality between �nding regularities in the network structure and compressing a description of the �ow induced by the
network structure.

In the rate view, click Random walker and Start/stop and a random walker begins traversing the network. Moving from
one node to another, the random walker chooses which neighbor to move to next proportional to the weights of the links to
the neighbors according to Eq. (1). As described in Sec. 2.1.1, to ensure an ergodic solution, i.e., that the average visit rates
will reach a steady-state solution independent of where the random walker starts, the random walker sometimes moves to a
random node irrespective of the link structure. In this implementation, the random walker teleports to a random node with 15
percent chance every step, or about every six steps.

The histogram on the right in the rate view shows the node-visit distribution. The colored bars show the average distribution
so far in the simulation, and the bars with a gray border show the ergodic solution. The visit rates of the ergodic solution
correspond to the eigenvector of the leading eigenvalue of the transition matrix given by the network. This solution also
corresponds to the PageRank of the nodes (29). After a long time the average visit rates of the random walker will approach
the ergodic solution, but this walk-based method is very ine�cient for obtaining the ergodic solution. In practice, since the
map equation only takes the ergodic visit rates as input, we use the power-iteration method to derive the ergodic solution
(25). The power-iteration method works by operating on the probability distribution of random walkers rather than on a
speci�c random walker. By pressing Init votes , each node receives an equal share of this probability. By clicking Vote , the
probability at each node is pushed to neighbors proportional to the link weights, and 15 percent is distributed randomly. As

http://www.mapequation.org/apps/MapDemo.html
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Figure 4 The code view of the map equation demo showing the encoding of a random walker with the optimal five-module solution. Com-
pared to the two-module solution in Fig. 3, the index codebook is larger and used more o�en. Nevertheless, and thanks to the more e�icient encoding of
movements within modules with the smaller module codebooks, the per-step codelength is 0.32 bits shorter on average.

can be seen by clicking a few times on Vote , the probability distribution quickly approaches the ergodic solution.
In the code view, each node is labeled with its codeword as shown in Figs. 3 and 4. Each event, i.e., that the random walker

visits a node, enters a module, or exits a module, is also represented as a block in the stacks on the right. The stack under Index
codebook shows module-enter events, and the stack under Module codebooks shows within-module events. Mouseover a node
or a block in the map equation demo highlights the corresponding block or node. The height of a block represents the rate at
which the corresponding event occurs, and the bit string to the right of each block is the codeword associated with the event.
The codewords are Hu�man codes (27) derived from their frequency of use. Hu�man codes are optimal for symbol-by-symbol
encoding with binary codewords given a known probability distribution. As explained in Sec. 2.1.2, the average codelength of
a Hu�man code is bounded below by the entropy of the probability distribution (28). In general, the average codelength of a
Hu�man code is somewhat longer than the theoretical limit given by the entropy, which has no constraints on using integer-
length codewords. For example, the average codelengths with actual binary codewords shown in the lower right corners of
Figs. 3 and 4 are about a percent longer than the theoretical limit.

In practice, for taking advantage of the duality between �nding the community structure and minimizing the description
length, we use the theoretical limit given by the map equation. That is, we show the codewords in the map equation demo only
for pedagogical reasons. For example, note that frequently visited nodes are assigned short codewords and that infrequently
visited nodes are assigned longer codewords, such that the description length will be short on average. Similarly, modules
which the random walker enters frequently are assigned short codewords, and so on. The varying codeword lengths take
advantage of the regularity that some events happen more frequently than other, but does not take advantage of the community
structure of the network. Instead, it is the modular code structure with an index codebook and module codebooks that exploits
the community structure.

The optimal network partition corresponds to a modular code structure that balances the cost of specifying movements
within and between modules. Figure 3 shows a network partition with two modules. The lower bound of the average descrip-
tion length for specifying movements within modules is 3.77 bits per step and only 0.10 bit per step for specifying movements
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into modules. Describing movements into modules is cheap because a single bit is necessary to specify which of the two mod-
ules the random walker enters once it switches between modules, and it only switches between modules every ten steps on
average. However, the movements within modules are relatively expensive, since each module contains many nodes, each one
with a rather long codeword. The more events a codebook contains, the longer must the codewords be on average, because
there is a limited number of short codewords. Figure 4 shows the optimal network partition with �ve modules. In this parti-
tion, the smaller modules allow for more e�cient encoding of movements within modules. On average, specifying movements
within modules requires 3.13 bits per step, 0.64 bit less in the two-module solution in Fig. 3. This compression gain comes at
the cost of more expensive description of movements into the �ve modules, but the overall codelength is nevertheless smaller,
3.55 bits in the optimal solution compared to 3.87 bits in the two-module solution. To better understand the inner-workings
of the map equation, it is helpful to change the partition of the network in the map equation demo and study how the code
structure and associated codelengths change.

Here we have described the basic two-level map equation. One strength of the map equation framework is that it is gen-
eralizable to higher-order structures, for example to hierarchical structures (30), overlapping structures (31), or higher-order
Markov dynamics (10). For details about those methods, we refer to the cited papers.

2.2. Infomap
We use Infomap to refer to the search algorithm for minimizing the map equation over possible network partitions. Below we
brie�y describe the algorithms for identifying two-level and multilevel solutions.

2.2.1. Two-level algorithm
The core of the algorithm follows closely the Louvain method (13): neighboring nodes are joined into modules, which subse-
quently are joined into supermodules and so on. First, each node is assigned to its own module. Then, in random sequential
order, each node is moved to the neighboring module that results in the largest decrease of the map equation. If no move
results in a decrease of the map equation, the node stays in its original module. This procedure is repeated, each time in a
new random sequential order, until no move generates a decrease of the map equation. Then the network is rebuilt, with the
modules of the last level forming the nodes at this level, and, exactly as at the previous level, the nodes are joined into modules.
This hierarchical rebuilding of the network is repeated until the map equation cannot be reduced further.

With this algorithm, a fairly good clustering of the network can be found in a very short time. Let us call this the core
algorithm and see how it can be improved. The nodes assigned to the same module are forced to move jointly when the
network is rebuilt. As a result, what was an optimal move early in the algorithm might have the opposite e�ect later in the
algorithm. Two or more modules that merge together and form one single module when the network is rebuilt can never be
separated again in this algorithm. Therefore, the accuracy can be improved by breaking the modules of the �nal state of the
core algorithm in either of the two following ways:

Submodule movements. First, each cluster is treated as a network on its own and the main algorithm is applied to this
network. This procedure generates one or more submodules for each module. Then all submodules are moved back to their
respective modules of the previous step. At this stage, with the same partition as in the previous step but with each submodule
being freely movable between the modules, the main algorithm is re-applied.

Single-node movements. First, each node is re-assigned to be the sole member of its own module, in order to allow for single-
node movements. Then all nodes are moved back to their respective modules of the previous step. At this stage, with the same
partition as in the previous step but with each single node being freely movable between the modules, the main algorithm is re-
applied. In practice, we repeat the two extensions to the core algorithm in sequence and as long as the clustering is improved.
Moreover, we apply the submodule movements recursively. That is, to �nd the submodules to be moved, the algorithm �rst
splits the submodules into subsubmodules, subsubsubmodules, and so on until no further splits are possible. Finally, because
the algorithm is stochastic and fast, we can restart the algorithm from scratch every time the clustering cannot be improved
further and the algorithm stops. The implementation is straightforward and, by repeating the search more than once, 100
times or more if possible, the �nal partition is less likely to correspond to a local minimum. For each iteration, we record the
clustering if the description length is shorter than the shortest description length recorded before.

2.2.2. Multilevel algorithm
We have generalized our search algorithm for the two-level map equation to recursively search for multilevel solutions. The
recursive search operates on a module at any level; this can be all the nodes in the entire network, or a few nodes at the �nest
level. For a given module, the algorithm �rst generates submodules if this gives a shorter description length. If not, the recursive
search does not go further down this branch. But if adding submodules gives a shorter description length, the algorithm tests if
movements within the module can be further compressed by additional index codebooks. Further compression can be achieved
both by adding one or more coarser codebooks to compress movements between submodules or by adding one or more �ner
index codebooks to compress movements within submodules. To test for all combinations, the algorithm calls itself recursively,
both operating on the network formed by the submodules and on the networks formed by the nodes within every submodule.
In this way, the algorithm successively increases and decreases the depth of di�erent branches of the multilevel code structure
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in its search for the optimal hierarchical partitioning. For every split of a module into submodules, we use the two-level search
algorithm described above.

3. Step-by-step instructions to the MapEquation so�ware package
Here we provide detailed instructions on how to analyze networks with the map equation framework and the software we
have developed on top of it. Networks can be analyzed either by using the MapEquation web applications, or by downloading
the Infomap source code and run the program locally from the command line. Both the MapEquation software package and
the Infomap source code can be found on the website www.mapequation.org. The MapEquation software package provides
applications for both analyzing and visualizing networks. The web application interface o�ers helpful tools for visualizing the
data, but the interface can be slow for large networks and is not useful for clustering more than on the order of 10,000 nodes.
The Infomap source code, on the other hand, is fast and more �exible. It can cluster networks with hundreds of millions of
nodes and comes with additional options for network analysis. After using Infomap, many of the results can be imported and
visualized in the web application.

This section is organized as follows. In Sec. 3.1, we provide instructions for how to analyze and visualize networks with
the MapEquation web applications. In Sec. 3.2, we explain how to analyze networks with the Infomap source code from the
command line. Finally, in Sec. 3.3, we specify all available input and output formats.

3.1. The MapEquation web applications
The MapEquation web applications are available on www.mapequation.org/apps.html. They include the Map & Alluvial Gen-
erator for visualizing two-level modular structures and change in those structures, and the Hierarchical Network Navigator for
exploring hierarchical and modular organization of real-world networks. Below we provide step-by-step instructions for how
to use these applications.

3.1.1. The Map Generator
The Flash application on www.mapequation.org/apps/MapGenerator.html includes the Map Generator and the Alluvial
Generator for analyzing and visualizing single networks and change in multiple networks, respectively. When you load your
weighted or unweighted, directed or undirected network into the application, the Map Generator clusters the network based
on the map equation and generates a map for you to customize and save as a pdf �le. To simplify and summarize important
structural changes in networks with alluvial diagrams, the Alluvial Generator makes it possible to load multiple networks
with coinciding node names and partition them one by one with the Map Generator. Figure 5 shows the start frame of the
Map and Alluvial Generator for loading networks.

To load, analyze, and view networks with the Map Generator, the following steps are essential:

1. Load the .net network �le into the Map Generator by clicking the button Load network and choose between undi-
rected and directed network. For very large networks, the load and clustering time can be long in the Flash-based Map
Generator. If you are encountering problems because of large networks, you can run the clustering code o�ine and load
the .map �le into the application by clicking Load map .

If you just want to try out the Map Generator, a few sample networks are provided in the application, including Modular
demo network, Network scientists 2010, and Social science 2004. The Modular demo network is the network used in Sec. 2.1.
The weighted undirected network Network scientists 2010 is the largest connected component of a coauthorship network
compiled (for details of how weights are assigned, see ref. (32)) from two network reviews, refs. (33) and (34) and one
community detection review, ref. (11), and can be downloaded1 in .net format. The weighted directed network Social
science 2004, as well as Science 1998–2004 provided under Load map , come from Thomson-Reuters’ Journal Citation
Reports 2004. The data tally on a journal-by-journal basis the citations from articles published in a given year to articles
published in the previous �ve years, with self-citations excluded.

2. Cluster the network based on the map equation by clicking Calculate clusters or alternatively provide a clustering in
Pajek’s .clu format by clicking Load cluster data . The Infomap algorithm tries to minimize the description length of a
random walker’s movement on the network as described in Sec. 2.2 and reveals important aspects of network structure
with respect to the dynamics on the network.

1 Collaboration network of network scientists is available for download here: http://mapequation.org/downloads/netscicoauthor2010.net

http://www.mapequation.org/
http://www.mapequation.org/apps.html
http://www.mapequation.org/apps/MapGenerator.html
http://mapequation.org/downloads/netscicoauthor2010.net
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Figure 5 The start frame of the Map and Alluvial Generator in the Flash application available on
www.mapequation.org/apps/MapGenerator.html. Load the .net network file into the Map Generator by clicking the bu�on Load network

and choose between undirected and directed network. When the network is loaded, click Calculate clusters to cluster the network based on the map
equation and generate a map of the network.

3. The Map Generator displays the network as a map. Every module represents a cluster of nodes and the links between
the modules represent the �ow between the modules. The default name of a module is given by the node with largest
�ow volume in the module. The size of a module is proportional to the average time a random walker spends on nodes
in the module and the width of a link is proportional to the per step probability that a random walker moves between
the modules. The module’s internal �ow is also distinguished from the �ow out of the module by a layer as shown for
citation data below.
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4. Customize the map by changing the position of the modules manually or automatically (see Placement tools in the
control panel), by changing the names of the modules (double click on a module to edit the name and list the nodes within
the module together with their �ow values), by changing the color of modules and links (see Color and size tools in
the control panel), by moving the labels, etc. All adjustments can also be applied only to selected modules (shift-click
selects a single module and shift-drag selects multiple modules).

5. Save the customized map in scalable vector graphics as a pdf �le or as a .map �le for later access in the Map Generator.

Figure 6 shows the Map Generator after following steps 1-5 above with the journal citation network Science 2004 provided in
the application.

3.1.2. The Alluvial Generator
The Alluvial Generator is integrated with the Map Generator. It can load multiple networks with coinciding node names and
partition them one by one with the Map Generator. The alluvial diagram can reveal organizational changes with streamlines
between modules of the loaded networks, as shown on the right in Fig.7. The �gure shows three scienti�c journal networks
for years 1998, 2001, and 2004 loaded with the button Load map .

To use the Alluvial Generator, the following steps are essential:

http://www.mapequation.org/apps/MapGenerator.html
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Figure 6 The map and the control panel of the Map Generator available on www.mapequation.org/apps/MapGenerator.html. In this example,

the network Science 2004 was loaded and the scientific fields were identified and visualized by clicking Calculate clusters . The largest field has been
renamed to Molecular biology and the open window lists the top journals assigned to the field together with their flow volume (PageRank).

1. Follow the instructions for the Map Generator described in Sec. 3.1.1 above to load a �rst network.

2. Click Add network above the control panel to load additional networks. You can rearrange the order of loaded net-
works. Simply click a network thumbnail above the control panel and drag it to its preferred position.

3. The alluvial diagram is displayed to the right of the control panel. If you need more room, you can collapse the map by
clicking the collapse button in the upper left corner of the map. It is easy to rearrange the modules and the streamlines,
just click and drag to the new position. Highlighted nodes in a module can be rearranged if you keep the mouse button
pressed for two seconds. The modules are �rst named by the most important node in the module (highest PageRank),
but all names can be selected and changed appropriately. To change the layout of the diagram, use the size controls
under Alluvial diagram in the control panel.

4. To remove, highlight, or explore a module, just click the module and select one of the options under Alluvial diagram in
the control panel. A double-click takes you directly to the Module explorer. Drag and select multiple modules to perform
actions to multiple modules at the same time.

5. In the Module explorer, you can select and highlight individual or groups of nodes. The left column corresponds to the
selected module(s) and the right column corresponds to the module assignment in the network marked in the drop-
down list. Grayed out names belong to modules that are not included in the diagram. To include such a module, just
double-click the grayed-out module name. A dash - means that the node does not exist in the network.

6. By clicking FULLSCREEN in the upper right corner you can use your entire screen. For security reasons, Flash does
not allow for inputs from the keyboard in fullscreen mode and you cannot edit any text. Pressing ESC takes you back
to normal mode.

To separate change from mere noise, we provide separate code that simultaneously identi�es modules and performs signi�-
cance analysis with bootstrap networks. The code outputs a �le with extension .smap described in Sec. 3.3 below. To include
signi�cance information about the network clusters, download and run the code conf-infomap2 on each network and load

2 Code for generating signi�cance modules is available for download here: www.tp.umu.se/ rosvall/code.html#mapchange

http://www.mapequation.org/apps/MapGenerator.html
http://www.tp.umu.se/~rosvall/code.html#mapchange
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Figure 7 The control panel and an alluvial diagram of the Alluvial Generator available on www.mapequation.org/apps/MapGenerator.html.
In this example, the three journal citation networks Science 1998, Science 2001, and Science 2004 have been loaded as .map files. The alluvial diagram uses
streamlines to connect nodes assigned to modules in the di�erent networks. Here all journals assigned to the field Chemistry in 2004 have been high-
lighted in red, and the streamlines trace back in which fields those journals were clustered in years 1998 and 2001. The Module explorer contains detailed
information about individual journals.

the resulting .smap �les instead of the networks by clicking Load map .

3.1.3. The Hierarchical Network Navigator
We have developed the Hierarchical Network Navigator to make it easier to explore the hierarchical and modular organization
of real-world networks. When you load your network, the network navigator �rst runs the Infomap algorithm to generate a
hierarchical map. Then it loads the solution into the Finder and Network view for you to explore. The Finder simultaneously
shows modules in multiple levels but no link structure, whereas the Network view shows the link structure within a single
module. Figure 8 shows the Hierarchical Network Navigator loaded with the undirected network Network scientists 2010
provided in the application.

To use the Hierarchical Network Navigator, the following steps are essential:

1. Click on the button Load network and browse your network �le matching the �le formats.

2. Choose between Undirected/Directed links and Multilevel/Two-level clustering.

3. If you loaded a link list, you have to check Zero-based numbering if the node numbers in the �le starts from 0, otherwise
they are assumed to start from 1.

4. Click on Calculate clusters .

5. The Infomap algorithm will start to cluster your network and print its progress in the Network loader window. When it
is �nished, the Network loader window will automatically close and you can navigate your network in the Finder and
the Network view. If Infomap exited with an error, please check the error message in the Network loader window.

Because the Hierarchical Network Navigator makes it possible to navigate really large networks, we have developed a stream-
able �le format that supports fast navigation without �rst loading the entire network �le and subsequently clustering the
network in the Flash application with the integrated and therefore slower Infomap code as described in steps 1–5 above. The
binary �le with su�x .bftree can be generated with the fast Infomap source code described in Sec. 3.2. The �le format
includes the hierarchical structure in a breath �rst order, including the �ow links of each sub-network. In this way, only a
small part of the �le needs to be loaded to visualize the top structures, and the deeper structures can be loaded on demand. If
the stand-alone Infomap source code is used, the following steps are essential:

http://www.mapequation.org/apps/MapGenerator.html
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Figure 8 The Finder and the Network view in the Hierarchical Network Navigator available on
www.mapequation.org/apps/NetworkNavigator.html. In this example, we have loaded the collaboration network Network scientists 2010 pro-
vided in the application and navigated three steps down to the finest level in the hierarchical organization to show the connections between the actual
scientists in the module Latora, V.,. named a�er the researcher with strongest connections and largest flow value in the module. We use a period or
multiple periods a�er a module name to indicate that there are one or more levels of nested modules within the module.

1. Run Infomap on the network with the �ag --bftree (see instructions in Sec. 3.2).

2. Click Load map in the Hierarchical Network Navigator and browse to your .bftree �le generated by Infomap.

3. The Network loader window will automatically close and the Finder and Network view will open with the top level data
visible.

Whichever method was used to generate the result, the following commands are available to navigate and customize the
network:

Navigation • Use the keyboard arrows → , ↓ , ← , and ↑ to navigate in the Finder.

• Use click and alt + click to navigate down and up, respectively, in the Network view.
• Use the search �eld in the Finder to directly navigate to nodes anywhere in the hierarchical structure.

Customization • Click the button in the top right in the Network view window to toggle the Control panel.
• Filter the number of nodes by setting the link limit.
• Change the size and color scales in the corresponding tab.

Explanation • The horizontal bars to the left of the node names in the Finder shows the �ow volume of the nodes as
a fraction of the whole network (color) and as a fraction of their parent nodes (size). The size is scaled
logarithmically so that for each halving the �ow is reduced by a factor ten. Thus, the two vertical lines
within the bar measures, from left to right, 1% and 10% of the parent �ow.

• The numbers after the modules in the Finder shows the maximum depth under that node in the tree.
The same information is also encoded in the color of the arrow.

• The module names are automatically generated from their largest children, adding a new period for
each level.

• Every module represents a cluster of nodes and the links between the modules represent the �ow
between the modules. The size of a module is proportional to the average time a random walker

http://www.mapequation.org/apps/NetworkNavigator.html
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spends on nodes in the module and the width of a link is proportional to the per step probability that
a random walker moves between the modules.

3.2. The Infomap command line so�ware
For large networks, the load and clustering time can be very long in the Flash-based Map Generator. To overcome this problem,
the Infomap source code for clustering large networks can be executed from the command line. The code generates output �les
that can be loaded in the MapEquation web applications. Here we describe how to install and run Infomap from the command
line with di�erent options.

3.2.1. Installation
The latest Infomap code can be downloaded on www.mapequation.org/code.html. The source code is also available at Bit-
bucket3. Infomap is written in C++ and can be compiled with gcc using the included Makefile. To extract the zipped archive
and compile the source code in a Unix-like environment, open a terminal and type:

cd [path/to/Infomap]
unzip Infomap-0.13.5.zip
cd Infomap-0.13.5
make

Substitute [path/to/Infomap] with the folder where Infomap was downloaded, e.g. ∼/Downloads. To be able to run on a
Windows machine, you can install MinGW/MSYS to get a minimalist development environment where the above instructions
will work. Please follow the instructions on MinGW - Getting Started4 or download the complete MinGW-MSYS Bundle5.

3.2.2. Running
To run Infomap on a network, use the following command:

./Infomap [options] network_data dest

The optional arguments can be put anywhere. Run ./Infomap --help or see Sec. 3.2.3 for available options. The option
network_data should point to a valid network �le and dest to a directory where Infomap should write the output �les. If
no option is given, Infomap will assume an undirected network and try to partition it hierarchically.

3.2.3. Options
For a complete list of options, run ./Infomap --help. Below we provide the most important options to Infomap:

------- Input -------
-i<o>, --input-format=<o> # Specify input format ('pajek' or 'link-list') to override format

possibly implied by file extension.
-z, --zero-based-numbering # Assume node numbers start from zero in the input file instead of

one.
-k, --include-self-links # Include links with the same source and target node. (Ignored by

default.)
-c<p>, --cluster-data=<p> # Provide an initial two-level solution (.clu format).

------- Output -------
--tree # the hierarchy in .tree format. (default true)
--map # the top two-level modular network in the .map format.
--clu # the top cluster indices for each node.
--node-ranks # the calculated flow for each node to a file.
--btree # the tree in a streamable binary format.
--bftree # the tree including horizontal flow links in a streamable binary format.

------- Dynamics -------
-u, --undirected # Assume undirected links. (default)
-d, --directed # Assume directed links.

3 https://bitbucket.org/mapequation/infomap
4 http://www.mingw.org/wiki/Getting_Started
5 http://sourceforge.net/projects/mingwbundle/�les/latest/download

http://www.mapequation.org/code.html
http://www.mingw.org/wiki/Getting_Started
http://sourceforge.net/projects/mingwbundle/files/latest/download
https://bitbucket.org/mapequation/infomap
http://www.mingw.org/wiki/Getting_Started
http://sourceforge.net/projects/mingwbundle/files/latest/download


16

-t, --undirdir # Two-mode dynamics: Assume undirected links for calculating flow, but directed
when minimizing codelength.

-y<f>, --self-link-teleportation-probability=<f> # The probability of teleporting to itself.
Effectively increasing the code rate, generating more and smaller modules.

------- Miscellaneous -------
-2, --two-level # Optimize a two-level partition of the network.
-s<n>, --seed=<n> # A seed to the random number generator.
-N<n>, --num-trials=<n> # The number of outer-most loops to run before picking the best

solution.
-v, --verbose # Verbose output on the console. Add additional 'v' flags to increase verbosity

up to -vvv.
-h,--help # Prints help message with full list of commands.

Argument types are de�ned by:

<n> # a positive integer
<f> # a floating point number
<p> # a path to a file or directory
<o> # a string that matches one of the listed options

3.2.4. Examples
We begin with a simple example with the network �le ninetriangles.net provided in the root directory of the source code.
First we create a new directory where we want the put the results, and feed the destination to Infomap together with the input
network and the option to -N 10, which tells the code to pick the best result from 10 attempts.

mkdir output
./Infomap ninetriangles.net output/ -N 10

Now Infomap will try to parse the �le ninetriangles.net as an undirected network, try to partition it hierarchically, and
write the best result out of 10 attempts to the output directory as a .tree �le described in Sec. 3.3. In the second example
speci�ed below, Infomap will treat the network as directed and try to �nd the optimal two-level partition with respect to the
�ow. With this command, Infomap will also create an output .map �le that can be visualized with the Map Generator, for
example.

./Infomap ninetriangles.net output/ -N 10 --directed --two-level --map

As mentioned earlier, for viewing large networks in the Hierarchical Network Navigator, we recommend options --btree or
--bftree to generate streamable binary .btree and .bftree �les, respectively.

For acyclic or time-directed networks, such as article-level citation networks, we recommend the option --undirdir, which
makes Infomap use a random walk model with movements both along and against link directions but encoding only along
link directions. With the standard random walk model, a disproportional amount of �ow will reach the oldest articles.

3.3. Network input and output formats
Here we specify all �le formats that can be loaded as input or generated as output from the applications in the MapEquation
software package.

3.3.1. Pajek’s .net format
Network data with the format of Pajek’s .net format can be loaded in all applications of the MapEquation software package.
The Pajek format speci�es both the nodes and the links in two di�erent sections of the �le. In the .net �le, the network nodes
have one unique identi�er and a label. The de�nition of nodes starts with the line *Vertices N, where N is the number of
nodes in the network. Labels or node names are quoted directly after the node identi�er. The link section starts with the line
*Edges L or *Arcs L (case insensitive), where L is the number of links. Weights can be given to nodes by adding a third
column with positive numbers. Below we show an example network with six nodes and eight directed and weighted links.

# A network in Pajek's .net format

*Vertices 6
1 "Node 1" 1.0
2 "Node 2" 1.0
3 "Node 3" 1.0
4 "Node 4" 1.0
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5 "Node 5" 1.0
6 "Node 6" 1.0

*Arcs 8
1 2 3.0
2 3 2.0
3 1 2.0
1 4 1.0
4 5 2.0
5 6 2.0
6 4 2.0
4 1 1.0

Pajek uses *Edges for undirected links and *Arcs for directed links. The MapEquation software package accepts both *
Edges and *Arcs and the choice of load button in the user interface determines whether the algorithm treats the network as
undirected or directed. Directed links have the form from to weight. That is, the �rst link in the list above goes from node
1 to node 2 and has weight 3.0. The link weight is optional and the default value is 1 (we aggregate the weights of links de�ned
more than once). Node weights are optional and sets the relative proportion to which each node receives teleporting random
walkers in the directed version of the code.

3.3.2. The link list format
The Hierarchical Network Navigator can, in addition to a Pajek .net �le, also load a link list. A link list is a minimal format
to describe a network by only specifying a set of links as shown below. Each line corresponds to the triad source target
weight, which describes a weighted link between the nodes with speci�ed numbers. The weight can be any non-negative

value. If omitted, the default link weight is 1. The nodes are assumed to start from 1 and the total number of nodes will be
determined by the maximum node number.

# A network in link list format
1 2 1
1 3 1
2 3 2
3 5 0.5
...

3.3.3. Pajek’s .clu format
For a given network input �le, it is also possible to specify the clustering of the nodes in all applications. The cluster infor-
mation must be provided in Pajek’s .clu format. In the web applications, the �le can be loaded after the network by clicking
Load cluster data . Infomap reads the cluster information with the option -c clusterfile.clu Pajek’s .clu format is just

a list of module assignments as shown below.

# A clustering in Pajek's .clu format

*Vertices 6
2
2
2
1
1
1

The cluster �le above speci�es that nodes 1-3 in the network belong to module 2 and that nodes 4-6 belong to module 1.
Infomap generates a .clu �le with the option --clu.

3.3.4. The .map and .smap formats
Information contained in the network and the cluster �le together can be loaded in the web applications as a single .map �le,
which also include link and node information aggregated at the module level. The .map �le begins with information about
the number of nodes, modules, and links in the network, followed by the modules, nodes, and the links between modules in
the network as shown below.

# A network clustering file in the .map format
# modules: 2
# modulelinks: 2
# nodes: 6
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# links: 8
# codelength: 2.51912

*Directed

*Modules 2
1 "Node 1,..." 0.5 0.0697722
2 "Node 4,..." 0.5 0.0697722

*Nodes 6
1:1 "Node 1" 0.209317
1:2 "Node 3" 0.147071
1:3 "Node 2" 0.143613
2:1 "Node 4" 0.209317
2:2 "Node 6" 0.147071
2:3 "Node 5" 0.143613

*Links 2
1 2 0.0697722
2 1 0.0697722

This .map �le also contains the codelength and the �ow volumes of the nodes, and was generated with Infomap. In the output
from Infomap, the names under *Modules are by default derived from the node with the highest �ow volume within the
module and 0.5 0.0697722 represent, respectively, the aggregated �ow volume of all nodes within the module and the per
step exit �ow from the module. The nodes are listed with their module assignments together with their �ow volumes. Finally,
all links between the modules are listed in order from high �ow to low �ow. Infomap generates a .map �le with the option
--map.

The .smap �le below corresponds to the .map �le above with additional signi�cance information.

# A network significance clustering file in the .smap format
# modules: 2
# modulelinks: 2
# nodes: 6
# links: 8
# codelength: 2.51912

*Directed

*Modules 2
1 "Node 1,..." 0.5 0.0697722
2 "Node 4,..." 0.5 0.0697722

*Insignificants 1
2 < 1

*Nodes 6
1:1 "Node 1" 0.209317
1:2 "Node 3" 0.147071
1;3 "Node 2" 0.143613
2:1 "Node 4" 0.209317
2:2 "Node 6" 0.147071
2;3 "Node 5" 0.143613

*Links 2
1 2 0.0697722
2 1 0.0697722

The .smap �le contains the necessary information to generate a signi�cance map in the Alluvial Generator. Compared to
the .map �le above, this �le also contains information about which modules that are not signi�cantly standalone and which
modules they most often are clustered together with. The notation 2 < 1 under *Insignificants 1 in the example above
means that the signi�cant nodes in module 2 more often than the con�dence level are clustered together with the signi�cant
nodes in module 1. In the module assignments, we use colons to denote signi�cantly clustered nodes and semicolons to denote
insigni�cantly clustered nodes. For example, the colon in 1:1 "Node 1" 0.209317 means that the node belongs to the by
�ow largest set of nodes that are clustered together more often than the con�dence level number of bootstrap networks. This
.smap �le was generated with code described in Sec. 3.1.2. For more information, see ref. (35).

3.3.5. The .tree format
The default output from Infomap is a .tree �le that contains information about the identi�ed hierarchical structure. The
hierarchical structure in the .tree �le below has three levels.

# A .tree file specifying a tree-level hierarchical structure
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# Codelength = 3.48419 bits.
1:1:1 0.0384615 "7"
1:1:2 0.0384615 "8"
1:1:3 0.0384615 "9"
1:2:1 0.0384615 "4"
1:2:2 0.0384615 "5"
...

Each row begins with the multilevel module assignments of a node. The module assignments are colon separated from coarse
to �ne level, and all modules within each level are sorted by the total PageRank of the nodes they contain. Further, the integer
after the last comma is the rank within the �nest-level module, the decimal number is the steady state population of random
walkers, and �nally is the node name within quotation marks. Infomap generates a .tree �le by default, or with the option
--tree.

3.3.6. The .btree and .bftree formats
To be able to navigate the network as soon as the hierarchical structure has been loaded into the Hierarchical Network Nav-
igator, we use a customized streamable format that includes the tree structure in a breath �rst order (.btree and .bftree),
including the �ow links of each sub-network (.bftree only). In this way, only a small part of the �le has to be loaded to
visualize the top structures, and the deeper structures can be loaded on demand. Infomap generates the .btree and .bftree
�les with the options --btree and --bftree, respectively.

4. Conclusions
This tutorial is meant to serve as a guideline for how to use the map equation framework for simplifying and highlighting
important structures in networks. We have described several applications developed for analysis and visualization of large
networks. However, we haven’t covered all features and new software is under development. Ultimately, for maximal usability
and user-friendly interface, we would like the web application to be as fast as the command line software. We are continuously
investigating di�erent solutions that become available with new web technology, and welcome all feedback. Therefore, we
encourage you to contact us6 if you have any questions or comments. Please visit www.mapequation.org for the latest releases
and updates, including an up-to-date version of this tutorial.

References
1. Kanungo, T. et al. An e�cient k-means clustering algorithm: Analysis and implementation. IEEE Transactions on Pattern Analysis and

Machine Intelligence 24, 881–892 (2002).
2. Ward, J. H. Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association 58, 236–244 (1963).
3. Blei, D. M., Ng, A. Y. & Jordan, M. I. Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003).
4. Dorogovtsev, S. N. & Mendes, J. F. F. Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press,

2003).
5. Barrat, A., Barthlemy, M. & Vespignani, A. Dynamical Processes on Complex Networks (Cambridge University Press, New York, NY, USA,

2008).
6. Newman, M. E. J. Networks: An Introduction (Oxford University Press, 2010).
7. Rosvall, M. & Bergstrom, C. Maps of random walks on complex networks reveal community structure. Proc. Natl. Acad. Sci. USA 105,

1118 (2008).
8. Lancichinetti, A. & Fortunato, S. Community detection algorithms: a comparative analysis. Phys. Rev. E 80, 056117 (2009).
9. Aldecoa, R. & Marín, I. Exploring the limits of community detection strategies in complex networks. Sci. Rep. 3, 2216 (2013).

10. Rosvall, M., Esquivel, A. V., Lancichinetti, A., West, J. D. & Lambiotte, R. Memory in network �ows and its e�ects on community
detection, ranking, and spreading. Preprint at arXiv:1305.4807 (2013).

11. Fortunato, S. Community detection in graphs. Physics Reports 486, 75–174 (2010).
12. Newman, M. E. & Girvan, M. Finding and evaluating community structure in networks. Physical review E 69, 026113 (2004).
13. Blondel, V. D., Guillaume, J.-L., Lambiotte, R. & Lefebvre, E. Fast unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment 2008, P10008 (2008).
14. Lancichinetti, A., Radicchi, F., Ramasco, J. & Fortunato, S. Finding statistically signi�cant communities in networks. PLoS ONE 6, e18961

(2011).
15. Karrer, B. & Newman, M. E. Stochastic blockmodels and community structure in networks. Physical Review E 83, 016107 (2011).
16. Gopalan, P. K. & Blei, D. M. E�cient discovery of overlapping communities in massive networks. Proceedings of the National Academy

of Sciences 110, 14534–14539 (2013). PMID: 23950224.
17. Peixoto, T. P. Hierarchical block structures and high-resolution model selection in large networks. Preprint at arXiv:1310.4377 (2013).

6 www.mapequation.org/about

http://www.mapequation.org
http://www.mapequation.org/about


20

18. van Dongen, S. Graph Clustering by Flow Simulation. Ph.D. thesis, University of Utrecht (2000).
19. Lancichinetti, A., Fortunato, S. & Radicchi, F. Benchmark graphs for testing community detection algorithms. Physical Review E 78,

046110 (2008).
20. Fortunato, S. & Barthelemy, M. Resolution limit in community detection. Proceedings of the National Academy of Sciences 104, 36–41

(2007).
21. Waltman, L. & Eck, N. J. A new methodology for constructing a publication-level classi�cation system of science. Journal of the American

Society for Information Science and Technology 63, 2378–2392 (2012).
22. Traag, V. A., Van Dooren, P. & Nesterov, Y. Narrow scope for resolution-limit-free community detection. Physical Review E 84, 016114

(2011).
23. Kawamoto, T. & Rosvall, M. The map equation and the resolution limit in community detection. Preprint at arXiv:1402.4385 (2014).
24. Lambiotte, R. & Rosvall, M. Ranking and clustering of nodes in networks with smart teleportation. Phys. Rev. E 85, 056107 (2012).
25. Golub, G. H. & Van Loan, C. F. Matrix computations, vol. 3 (JHU Press, 2012).
26. Schaub, M. T., Lambiotte, R. & Barahona, M. Encoding dynamics for multiscale community detection: Markov time sweeping for the

map equation. Phys. Rev. E 86, 026112 (2012).
27. Hu�man, D. A. et al. A method for the construction of minimum redundancy codes. Proceedings of the IRE 40, 1098–1101 (1952).
28. Shannon, C. E. & Weaver, W. A mathematical theory of communication (1948).
29. Brin, S. & Page, L. The anatomy of a large-scale hypertextual web search engine. Comput. Networks ISDN 30, 107–117 (1998).
30. Rosvall, M. & Bergstrom, C. Multilevel compression of random walks on networks reveals hierarchical organization in large integrated

systems. PLoS ONE 6, e18209 (2011).
31. Esquivel, A. & Rosvall, M. Compression of �ow can reveal overlapping-module organization in networks. Phys. Rev. X 1, 021025 (2011).
32. Newman, M. E. Scienti�c collaboration networks. ii. shortest paths, weighted networks, and centrality. Physical review E 64, 016132

(2001).
33. Newman, M. E. The structure and function of complex networks. SIAM review 45, 167–256 (2003).
34. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M. & Hwang, D.-U. Complex networks: Structure and dynamics. Physics reports 424,

175–308 (2006).
35. Rosvall, M. & Bergstrom, C. Mapping change in large networks. PLoS ONE 5, e8694 (2010).


	Overview of methods
	The map equation framework
	The map equation
	Dynamics on networks modeled with random walkers
	Basic information theory
	The mathematics of the map equation
	The machinery of the map equation

	Infomap
	Two-level algorithm
	Multilevel algorithm


	Step-by-step instructions to the MapEquation software package
	The MapEquation web applications
	The Map Generator
	The Alluvial Generator
	The Hierarchical Network Navigator

	The Infomap command line software 
	Installation
	Running
	Options
	Examples

	Network input and output formats
	Pajek's |.net| format
	The link list format
	Pajek's |.clu| format
	The |.map| and |.smap| formats
	The |.tree| format
	The |.btree| and |.bftree| formats


	Conclusions 

