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Mapping flows on bipartite networks
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Mapping network flows provides insight into the organization of networks, but even though many real
networks are bipartite, no method for mapping flows takes advantage of the bipartite structure. What do we miss
by discarding this information and how can we use it to understand the structure of bipartite networks better? The
map equation models network flows with a random walk and exploits the information-theoretic duality between
compression and finding regularities to detect communities in networks. However, it does not use the fact that
random walks in bipartite networks alternate between node types, information worth 1 bit. To make some or all
of this information available to the map equation, we developed a coding scheme that remembers node types
at different rates. We explored the community landscape of bipartite real-world networks from no node-type
information to full node-type information and found that using node types at a higher rate generally leads to
deeper community hierarchies and a higher resolution. The corresponding compression of network flows exceeds
the amount of extra information provided. Consequently, taking advantage of the bipartite structure increases the
resolution and reveals more network regularities.
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I. INTRODUCTION

Many networks are bipartite [1–3]. They model inter-
actions between entities of different types, such as users
watching movies, documents containing words, and animals
eating plants. Bipartite networks can also represent many-
body interactions in hypergraphs, such as authors writing
papers, proteins forming complexes, and people attending
meetings. Studying these networks with the naked eye is often
infeasible because of their size and complexity. Therefore,
to carry out further analysis, we must simplify them. We
need to find coarse-grained descriptions that highlight their
community structure [4].

Most community-detection methods are developed for uni-
partite networks but can be used for bipartite networks as
they are, either by running them on unipartite projections or
by applying them directly to bipartite networks [5,6]. How-
ever, both these approaches have limitations. First, unipartite
projections of bipartite networks cannot preserve all the in-
formation that is encoded in the bipartite network such that
significant structure is lost [2]. Second, applying unipartite
methods directly to bipartite networks ignores the regularities
of bipartite networks and does not take into account the fact
that links only connect nodes of different types [7]. What do
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we miss by discarding this node-type information? How can
we use it to understand the structure of bipartite networks
better?

To explore the value of using bipartite information in
community detection, we study the flow-based community-
detection method Infomap [8], which uses an information-
theoretic objective function, known as the map equation [9],
to exploit the duality between compression and finding regu-
larities in data. The map equation models network flows with
random walks and relates the quality of a network partition to
how well it compresses a modular description of the random
walks. Modules with long flow persistence, such as cliques
or clique-like groups, achieve the best compression. To derive
a coding scheme, the map equation uses a hierarchical code
that reflects the structure of the network partition. However,
this coding scheme is designed for unipartite networks and
assumes that any pair of nodes can be connected and visited
one after the other; it does not take advantage of the structural
constraints in bipartite networks where links only connect
nodes of different types and random walks must alternate
between them. Consequently, the map equation disregards
bipartite information and provides suboptimal compression.

To address these issues, we developed a coding scheme
that uses node-type information at different and adjustable
rates. For a node-type remembering rate of zero, we recover
the standard map equation; a remembering rate of one leads
to a fully bipartite map equation and higher compression.
Through intermediate rates, we can analyze how the commu-
nity landscape changes with available node-type information.
We implemented the bipartite coding scheme in Infomap [10]
and explored the community landscape of real-world net-
works from different domains.

In networks with community structure, we can compress
flows beyond the extra information we make available through
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the coding scheme. When we describe a network with all
its nodes in one module, our coding scheme improves the
compression by an amount equal to the entropy of the rate
at which node types are used. In hierarchical partitions, the
compression improves proportionally to the available node-
type information. Generally, exploiting node types at higher
rates increases the resolution and leads to deeper community
structures with more and smaller modules, thus revealing
more network regularities.

II. THE MAP EQUATION FRAMEWORK

To illustrate the duality between compression and finding
regularities in network data, consider a communication game
where the sender uses code words to update the receiver about
the position of a random walker in a network. We assume
that the sender and receiver remember the current module but
not the current node of the random walker. The question is
as follows: How can we devise a modular coding scheme to
minimize the average per-step description length, which we
refer to as the code length?

We start with all the nodes in one module and assign unique
code words to the nodes based on their ergodic visit rates.
The sender needs to communicate exactly one code word per
random-walker step to the receiver with this one-level ap-
proach. According to Shannon’s source-coding theorem [11],
the lower bound for the code length is the entropy of the node
visit rates.

If the network has a community structure, we can achieve
a lower code length with a two-level coding scheme: We par-
tition the nodes into modules and define a separate code book
for each module. This coding scheme uses unique code words
within modules, allowing nodes in different modules to reuse

short code words. To describe transitions between modules
for a uniquely decodable code, we introduce an index level
code book that assigns code words to modules and add exit
code words to each module code book. We can generalize this
approach and reduce the code length further with a recursive
code structure in multiple levels.

With a two-level approach, the sender communicates either
one or three code words per random walker step. For steps
within a module, the sender uses one code word from the cur-
rent module code book. For transitions between modules, the
sender communicates three code words from three different
code books:

(i) the exit code word of the current module code book,
(ii) the entry code word of the new module from the index

level code book, and
(iii) a node visit code word from the new module code

book.
For a small example network [Fig. 1(a)], we illustrate the

code-book structure for a two-level partition according to the
map equation [Fig. 1(b)].

The map equation calculates the code length L for a given
partition M as the average of the module and index level code
lengths, weighted by the fraction of time a random walker uses
each of the corresponding code books in the limit,

L(M) = qH (Q) +
∑
m∈M

pmH (Pm). (1)

Here, pm = qm + ∑
n∈m pn is the fraction of time the random

walker uses the code book for module m, where n ∈ m are the
nodes in m, pn is the ergodic visit rate of node n, and qm is the
entry and exit rate of m; q = ∑

m∈M qm is the rate at which
the index level code book is used; Q = {qm | m ∈ M} is the
set of module entry rates; Pm = {qm} ∪ {pn | n ∈ m} is the set
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FIG. 1. Graphical representation of the code books for the standard map equation and the bipartite map equation with α = 0.1 in an
unweighted example network where colors indicate modules. Block width corresponds to code word usage rate and block height to code-book
entropy, a block’s contribution to the map equation is its area. Letters in the blocks indicate which nodes they refer to, and e stands for module
exits. The horizontal gray bars show the contributions at index and module level. (a) The example network with color-coded modules. (b) The
standard map equation calculates the code length as 2.61 bits. (c) Using node-type information worth I = 0.47 bits, the bipartite map equation
with mixed node-type memory improves the compression by 0.65 bits to 1.96 bits.
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of node visit rates in module m, including module exit; and H
is the Shannon entropy. We assume undirected networks and
therefore entry and exit rates are the same.

To minimize the map equation, we need to make a tradeoff.
On the one hand, we want to keep modules small for short
code words within modules. On the other hand, we want to
limit the number of modules for short code words at the index
level. Further, modules should have long flow persistence and
cannot be too small; otherwise, a random walker changes
modules at a high rate and the sender is required to use the
index level code book frequently. Under these restrictions,
partitions with many links within modules and few links be-
tween modules give the best compression.

III. THE BIPARTITE MAP EQUATION

Since the map equation was developed for unipartite net-
works, its coding scheme can describe transitions between any
pair of nodes. However, directly applying the map equation
to bipartite networks leads to higher than necessary code
lengths because transitions only happen between nodes of dif-
ferent types in bipartite networks. For a more efficient coding
scheme in bipartite networks, we consider the communication
game again. As before, the sender updates the receiver about
the position of a random walker, but now both are aware of
the bipartite network structure.

In a food web, for example, where herbivores are con-
nected to plant species, random walks alternate between
animal and plant nodes. If the current node is an animal node,
the random walker must step to a plant node next, and vice
versa. Therefore, we can use a bipartite coding scheme with
two types of code books per module: one for animal-to-plant
and one for plant-to-animal transitions. Since both these code
books only address half of the nodes on average, code words
can be shorter.

To derive the code length of a bipartite coding scheme, we
apply Bayes’ rule to the standard map equation and obtain the
bipartite map equation. Let M1 be a partition with all nodes in
one module and P1 be the set of ergodic node visit rates over
two steps, that is, the visit rates we would obtain assuming
a unipartite network. The standard map equation calculates
the entropy of the random process X : current node from P1.
However, random walks on bipartite networks also provide
information about a second process, namely, Y : current node
type. In the bipartite map equation, we combine these two
processes into one, X |Y : current node, given current node
type, and determine its entropy with Bayes’ rule, H (X |Y ) =
H (X ) − H (Y ) + H (Y |X ). We know that H (Y ) = 1 bit be-
cause the random walk alternates between nodes of different
types and H (Y |X ) = 0 bits since the node fully determines the
node type. Let PL and PR be the sets of visit rates for left and
right nodes, respectively, that is the two types of nodes in the
bipartite network, given that the current node type is known.
Then, we can express L(M1) in terms of PL and PR,

L(M1) = H (P )

H (X )

= 1
H (Y )

+ 1

2
H (PL ) + 1

2
H (PR)

H (X |Y )

, (2)

to show that providing the node type reduces the description
of one-level partitions by 1 bit.

To generalize to two-level partitions, we plug this equation
into Eq. (1) and obtain the code length

L(M) = q

(
1 + 1

2
H (QL ) + 1

2
H (QR)

)

+
∑
m∈M

pm

(
1 + 1

2
H

(
PL

m

) + 1

2
H

(
PR

m

))
, (3)

where QL = {qL
m | m ∈ M} and QR = {qR

m | m ∈ M} are the
sets of left and right module entry rates; PL

m = {qL
m} ∪

{pu | u ∈ mL} and PR
m = {qR

m} ∪ {pv | v ∈ mR} are the sets of
left and right node visit rates in module m, including module
exits; mL and mR are the subsets of left and right nodes in m;
and pu ∈ PL and pv ∈ PR are the visit rates for left nodes u
and right nodes v, respectively.

By separating the left and right visit rates in Eq. (3), we
define the bipartite map equation:

LB(M) = qLH (QL ) +
∑
m∈M

pL
mH

(
PL

m

) + qRH (QR)

+
∑
m∈M

pR
mH

(
PR

m

)
, (4)

where qL = ∑
m∈M qL

m and qR = ∑
m∈M qR

m are the usage rates
for left-to-right and right-to-left code books at index level and
pL

m = qL
m + ∑

u∈mL pu and pR
m = qR

m + ∑
v∈mR pv are the usage

rates for left-to-right and right-to-left code books at the mod-
ule level. Thus, the bipartite map equation calculates the code
length for a given partition that describes a joint clustering of
left and right nodes in a bipartite network (detailed derivations
in Appendix A).

The bipartite map equation changes the communication
game. As before, the sender uses one code word to en-
code transitions within modules and three code words for
transitions between modules. But now, both sender and re-
ceiver keep track of the current node type to choose the
correct code book—left to right or right to left—for their
communication.

IV. THE BIPARTITE MAP EQUATION WITH VARYING
NODE-TYPE MEMORY

The map equation is about compression with constraints:
Compression is not the only goal. As we use the regularities in
a network more, we can increasingly compress its description,
but higher compression does not necessarily mean that we find
network structures that allow us to understand the network
better.

For example, consider a version of the coding game where
sender and receiver remember the location of the random
walker. In this case, we would use a coding scheme with
separate code books for each node with code words only
for neighboring nodes. This would allow us to encode the
walker’s path at the entropy rate of the corresponding Markov
process [11] and provide a better compression than the map
equation, but then nodes would not have unique code words
anymore and, even though the code is efficient, it would not
capture the modular structure of the network.

The key is that the map equation forgets at which exact
node a random walker is and only remembers the current
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module. With the bipartite map equation, we relax this
constraint by remembering node types. However, in sparse bi-
partite networks, this comes close to remembering nodes and
moves us toward encoding at the entropy rate of the Markov
process without identifying modular structure. Therefore, it is
useful to look at using node-type information at intermediate
rates.

In the bipartite map equation with varying node-type mem-
ory, node types are fuzzy. While each node has a true type,
either left or right, and the random walker alternates between
types, we assume that we cannot determine types reliably. We
model this uncertainty by introducing a node-type flipping
rate α. When we inspect a node, we observe its true type
with probability 1 − α, and the opposite type with probability
α. Then, on average, nodes appear both left and right to a
degree determined by α. Node-visit rates change accordingly
and become mixed; we describe them as pairs of left and right
flow: Left nodes u with visit rate pu have a mixed visit rate
pα

u = [(1 − α)pu, αpu] and right nodes v with visit rate pv

have a mixed visit rate pα
v = [αpv, (1 − α)pv].

Using Bayes’ rule again, we calculate the level of compres-
sion we can achieve when node types are fuzzy. Let M1 be a
partition with all the nodes in one module, P1 be the set of
ergodic node visit rates, and Pα

1 = {pα
n | n ∈ M1} be the set of

mixed node visit rates. The entropy of Y : current node type
is, as before, 1 bit because we observe left and right nodes
with probability 1

2 each. However, the entropy of Y |X :node
type, given node is now the entropy of the node-type flipping
rate, H (Y |X ) = Hα = H (1 − α, α). Overall, compared with
the standard map equation, we can improve the compression
by 1 bit, but node-type fuzziness increases the code length by
Hα , the entropy of the flipping rate,

L(M1) = H (P1)

H (X )

= 1
H (Y )

− Hα

H (Y |X )

+ H
(
Pα

1

)
H (X |Y )

, (5)

where H (Pα
1 ) is shorthand for the average component-wise

entropies of the mixed node visit rates.
Plugging Eq. (5) into the standard map equation gives us

the generalization to two-level partitions,

L(M) = q(1 − Hα + H (Qα )) +
∑
m∈M

pm
(
1 − Hα + H

(
Pα

m

))
.

(6)

We define the bipartite map equation with varying node-type
memory,

Lα (M) = qαH (Qα ) +
∑
m∈M

pα
mH

(
Pα

m

)
, (7)

which measures the code length for a partition M and
node-type flipping rate α. Figure 1(c) illustrates how the
code-book structure changes compared to the standard map
equation [Fig. 1(b)] for a fixed value α in the same example
network as before [Fig. 1(a)]. We can generalize the bipartite
map equation with varying node type memory to more than
two levels by recursively expanding the code-book structure
within modules. Then, each module within modules receives
its own set of entry, node visit, and exit code words.

When node types are flipped at a rate of α = 1
2 , nodes

become left and right in equal parts. With Hα = 1 bit, this

means that there is maximum uncertainty about node types.
Ignoring node types in this way is equivalent to using the
standard map equation. The bipartite map equation is recov-
ered for α = 0 and α = 1 because both values lead to Hα = 0.
However, they have different interpretations. For α = 0, node
types never flip and we can determine the true type of the
nodes. Under a flipping rate of α = 1, node types always flip
and we determine the opposite of the true node type. This has
no effect on the code length because it simply swaps the left
and right entropy terms of the bipartite map equation.

Using the bipartite map equation with varying node-type
memory, we are ready to answer the initial question: What
more can we learn about a network by using node types in
whole or in part? Because it is more intuitive to think about
how much we know about node types than the probability of
flipping them, we use entropy to connect these two quantities.
Flipping node types at rate α leads to an uncertainty of Hα

about them. Consequently, I (α) = 1 − Hα is the available
amount of information about node types, given that they are
flipped at rate α. This formulation suggests an alternative
interpretation of Eq. (5): we can reduce the code length of
one-level partitions exactly by the amount of information that
we have about node types. To investigate by how much we
can reduce the code length of two-level and hierarchical parti-
tions, we have applied the bipartite map equation to real-world
networks.

V. APPLYING THE BIPARTITE MAP EQUATION TO
REAL-WORLD NETWORKS

We have implemented the bipartite map equation for two-
level and hierarchical partitions in Infomap [10]. The time
complexity is the same as for standard Infomap, whose core
algorithm is linear in the number of links.

We used the bipartite implementation to analyze the com-
munity landscape of 21 bipartite networks from different
domains. Our results show that the bipartite map equation
uses node-type information effectively and improves the com-
pression beyond the provided information. The improved
compression increases the resolution and lets us discover more
regularities.

A. Networks

We selected 21 bipartite networks from different domains
from the KONECT [12] and ICON [13] databases and other
sources [14,15]. We preprocessed the networks with the
python package NETWORKX [16] and only kept their largest
connected components. The resulting networks ranged from
a few dozen to millions of nodes and edges in size; their
domain, number of left nodes nL, number of right nodes nR,
and number of edges m are listed in Table I. In weighted
networks, marked with the superscript W, the rate at which
the random walker uses edges is proportional to their weight.
In all networks, left nodes represent subjects, such as users,
documents, and animals, while right nodes represent objects
that are acted upon, such as movies, words, and plants.
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TABLE I. Properties of 21 bipartite test networks and their community landscape. The networks are sorted by number of edges, and
weighted networks are marked with the superscript W. For each network and amount of node-type information, we ran Infomap 100 times and
selected the hierarchical partitions with the best code length.

Code length Effective module size

Name Ref. Domain nL nR m I = 0 I = 0.5 I = 1 I = 0 I = 0.5 I = 1

Wiktionary (en)W [17] Authorship 26 719 2 091 461 5 569 967 12.14 11.53 10.67 27 934 15,520 36
Last.fm user-songW [12] Interaction 992 1 084 620 4 413 834 12.33 11.70 10.94 2 102 2 037 91
Wikipedia excellent [17] Text 2 780 273 959 2 941 902 13.64 13.15 11.80 68 944 145 24
IMDb actor-movie [18] Affiliation 124 414 374 511 1 460,791 11.99 11.33 10.37 23 15 3.5
Stack Overflow user-post [19] Rating 524 670 80 492 1 280 982 11.83 11.04 9.99 28 24 7.3
Reuters story-word [20] Text 19 757 38 677 978 446 13.44 12.89 11.94 9 029 1 564 2.0
Wiktionary (de)W [17] Authorship 5 354 144 710 686 661 11.23 10.65 9.82 3 690 2 490 3.0
Linux kernel mailing listW [21] Interaction 34 490 330 155 591 199 9.61 9.02 8.22 419 384 46
GitHub user-project [22] Authorship 39 845 99 907 417 361 11.24 10.52 9.21 23 10 3.2
YouTube user-group [23] Affiliation 88 490 25 007 286 913 10.25 9.58 8.55 48 29 5.4
APSMM conference [15] Social 93 023 21 240 342 10.79 10.06 9.09 6 742 3 663 108
LVHK Meetup [14] Social 6 061 5 096 127 033 11.58 11.06 10.09 1 011 141 1.5
PGHF Meetup [14] Social 4 989 4 611 39 501 10.90 10.26 9.26 52 14 1.8
SIAM conference [15] Social 10 018 19 15 533 7.94 7.29 6.59 525 427 89
NIPS conference [15] Social 6 902 27 12 595 8.14 7.38 6.74 288 227 38
UC Irvine forumW [24] Social 897 520 7 087 8.16 7.61 6.93 23 18 1.8
Norwegian directors [25] Economic 212 854 1 148 3.83 3.07 2.03 5.6 4.7 3.4
Virus-host interactome [26] Biological 41 288 433 4.89 4.21 3.24 17 13 5.7
Scottish directors [27] Economic 86 131 348 5.18 4.54 3.60 6.8 5.1 2.1
Arroyo GoyeW [28] Ecological 27 8 41 2.70 2.17 1.49 11 8.2 3.5
Fonseca GanadeW [31] Ecological 19 10 38 2.24 1.68 1.06 5.2 4.4 1.7

B. Setup

We explored the community landscape of our test networks
from no information at I = 0 bits to full information at I = 1
bit with a step size of 0.05 bits. For node-type information
I, we calculated the corresponding node-type flipping rate
α numerically. Because of its stochasticity, we ran Infomap
100 times for each network and value of α, both with the flag
--two-level, to search for two-level partitions, and without
the flag to search for hierarchical partitions. Finally, for each
α, we selected the partitions with the best code length for
further analysis.

C. Structure and compression

We measured the extra compression provided by a partition
M by using the corresponding one-level partition M1 as a
baseline. The one-level code length decreases by the amount
of node-type information that is available [Eq. (5)], specif-
ically Lα (M1) = L0.5(M1) − I (α), where I (α) = 1 − Hα is
the node-type information when node-types are flipped at
rate α. We define the extra compression of M as Lα (M1) −
Lα (M) � 0; it is always at least 0 because Infomap returns the
one-level partition when it does not find any partition with
lower code length. In partitions with more than one level,
the extra compression depends on the code-book use rate, the
total coding rate q + ∑

m∈M pm, and the amount of node-type
information [Eq. (6)].

To measure the resolution of the community detection, we
use the effective module size as a proxy. By only considering
leaf modules—those modules that contain nodes but have no
submodules—we can use the same measure for two-level and

hierarchical solutions. Let S be the set of leaf module sizes
in partition M where size refers to the number of nodes in
a module. Then the perplexity of the module sizes, 2H (S)

with H (S) = −∑
s∈S

s∑
s′∈S s′ log s∑

s′∈S s′ , tells us the effective
number of leaf modules, similar to how it can be used to
calculate the effective number of sides of a (loaded) coin
or die. Combining the effective number of modules together
with the number of nodes N in the network, we calculate the
effective module size as N

2H (S) .
The effective community size and extra compression cap-

ture two significant patterns in the analyzed networks.
First, the resolution increases and we detect more com-

munities on different scales when we use node types. At
lower levels in the community hierarchy, modules become
more fine-grained, while on higher levels, they become more
coarse. For example, in the weighted Fonseca-Ganade plant-
ant web, the bipartite map equation with I = 0.65 bits reveals
hierarchically nested modules with smaller modules at the
finest level (Fig. 2). With more node-type information, some
nodes are assigned into singleton modules that form bridges
between other modules. The flow-persistence time is not long
enough to include them in either of the other modules and,
therefore, it is better to assign them to their own modules
(Fig. 2). When we approach full node-type information at
I = 1 bit, it can lead to so many small modules that no useful
structure is detected anymore. For example, leaf modules in
the Las Vegas Hikers network (LVHK) contain only 1.5 nodes
on average [Fig. 3(a)]. In the IMDb actor-movie network, the
effective module size decreases approximately linearly from
23 at I = 0 bits to 3.5 at I = 1 bit [Fig. 3(b)]. In the Last.fm
user-song network, the effective module size is around 2 000
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(a) (b)

FIG. 2. Community structure at different scales in the weighted
Fonseca-Ganade plant-ant web [31]. By providing more node-type
information, we increase the resolution and detect finer modules
on lower and coarser modules on higher levels in the community
hierarchy. (a) Community structure for I = 0 bits (α = 1

2 ) with code
length 2.24 bits and effective module size 5.27. (b) Community
structure for I = 0.65 bits (α = 1

6 ) with code length 1.5 bits and
effective module size 4.35.

between I = 0 bits and I = 0.85 bits but then drops sharply
and is 91 for I = 1 bit [Fig. 3(c)]. We see a similar behavior
in all the networks we analyzed (Table I), both for hierarchical
and two-level partitions, with the difference being that sharp
drops in module size are less common in two-level partitions
(Fig. 3 and Fig. 4, Appendix B). However, as leaf modules
become smaller, the community hierarchy becomes deeper
such that higher levels still contain significant structures.

Second, the compression improves by more than the
amount of node-type information we provide. With the dual-
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FIG. 3. Compression and community resolution increase with
available node-type information. The solid and dashed blue lines
show the extra compression of the best hierarchical and two-level
partitions, respectively. The solid and dashed orange lines show the
effective module size of the best hierarchical and two-level parti-
tions, respectively. (a) Las Vegas Hikers (LVHK) Meetup attendance.
(b) IMDb actor-movie network. (c) Last.fm user-song network.
(d) Arroyo Goye pollinator-plant web.

ity between compression and finding regularities in data, the
bipartite map equation detects more structure in the bipartite
networks. Because the entropy function is nonlinear, the extra
compression generally increases faster with more available
information. For example, in the IMDb actor-movie network,
when the code length decreases from 11.99 bits at I = 0 bits
to 10.37 bits at I = 1 bit, the extra compression improves
from 5.7 to 6.3 bits, and the rate of improvement increases
closer to full node-type information [Table I, Fig. 3(b)]. In the
Arroyo Goye pollinator-plant web and the LVHK network, the
compression improves slowly at first, but faster once more
regularities can be detected above I = 0.5 bits [Figs. 3(a)
and 3(d)]. However, since we ran Infomap independently for
each α, the extra compression sometimes decreased with more
information [Figs. 3(a) and 3(b), and Fig. 4, Appendix B]. In
these cases, Infomap’s stochastic search algorithm did not find
partitions that would have led to an increase in extra compres-
sion. For example, using the same partition over the whole
range of α guarantees a monotonic increase in all networks.
Nevertheless, by providing more node-type information, the
regularizing effect of the standard map equation decreases and
the compression generally increases.

Higher resolution and further compression also result from
using shorter Markov times [29,30], but the map equation for
varying Markov times [5] and the bipartite map equation work
in different ways. Short Markov times correspond to a lazy
random walker on a modified network with strong self-links.
With fewer steps between nodes, cheaper transitions between
communities shift the optimal solution to smaller communi-
ties with shorter average code lengths. Instead, the bipartite
map equation transforms node type information into com-
pression with smaller node-type specific codebooks. Cheaper
transitions between communities then shift the optimal solu-
tion to smaller communities and result in extra compression.

VI. CONCLUSION

We have extended the map equation framework for find-
ing modules in network flows to use node-type information
encoded in bipartite networks. Applied to 21 real-world net-
works, the bipartite map equation implemented in the search
algorithm Infomap detects more, smaller communities at
lower levels of the community hierarchy and fewer, larger
modules at higher levels. The community-detection resolution
increases because the bipartite map equation’s coding scheme
exploits the alternating trajectories of random walks and com-
presses the description of network flows beyond the provided
node-type information. In between ignoring and making full
use of the node-type information, the bipartite map equa-
tion can use the node-type information at intermediate rates,
offering a principled way to explore communities at higher
resolution in bipartite networks.
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FIG. 4. (Continued)
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APPENDIX A: DERIVATION OF THE BIPARTITE MAP
EQUATION

Consider an undirected, weighted bipartite graph G =
(NL, NR, E , δ) with left nodes NL, right nodes NR, edges
E ⊆ NL × NR, and edge weights δ : E → R. Let PL =
{pu | u ∈ NL} and PR = {pv | v ∈ NR} be the left and right
node visit rates. Since the graph is undirected, we can calcu-

late the visit rates directly by pu =
∑

v∈NR
δ((u,v))

�(G) for left nodes

u and pv =
∑

u∈NL
δ((u,v))

�(G) for right nodes v, where �(G) =∑
e∈E δ(e) is the total edge weight in G. The visit rate of

a disconnected node is 0, but we exclude such nodes from
our considerations because they could be assigned to any
module without affecting the code length. Since the graph is
bipartite, both PL and PR sum to 1, that is,

∑
pu∈PL pu = 1

and
∑

pv∈PR pv = 1.
Let N = NL ∪ NR be the set of all nodes and P be the set

of ergodic visit rates over two steps, that is, the visit rates
we would obtain when we assume a unipartite network. For
distinction between node types, we use u to refer to left nodes,
v to refer to right nodes, and n when we talk about both types
in combination. We denote left and right visit rates by pu and
pv , respectively, and ergodic visit rates over two steps by pn.
Since the graph is bipartite, the total weight of edges incident
to left nodes is equal to the total weight of edges incident to
right nodes and, therefore, the ergodic visit rate over two steps
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FIG. 4. (a) Wiktionary (en): Left nodes represent authors, and right nodes represent articles on English Wiktionary. An edge connects
authors to the articles they have authored. (b) Last.fm user-song: Left nodes represent users, and right nodes represent songs. Edges connect
users to the songs they have listened to. (c) Wikipedia excellent: Left node represent excellent articles on Wikipedia, and right nodes represent
words. An edge connects an article to a word if it contains it. (d) IMDb actor-movie: Left nodes represent actors, and right nodes represent
movies. Edges connect actors to those movies they have played in. (e) Stack Overflow user-post: Left nodes represent users, and right nodes
represent posts. An edge connects users to those posts they have marked as a favorite. (f) Reuters story-word: Left nodes represent stories in the
Reuters Corpus, Volume 1, and right nodes represent words. An edge connects a story to a word if it contains it. (g) Wiktionary (de): Left nodes
represent authors, and right nodes represent articles on German Wiktionary. An edge connects authors to the articles they have authored. (h)
Linux kernel mailing list: Left nodes represent users, and right nodes represent threads in the linux kernel mailing list. An edge connects user to
those threads where they contribute. (i) GitHub user-project: Left nodes represent users, and right nodes represent projects. An edge connects
users to those projects where they are a member. (j) YouTube user-group: Left nodes represent users, and right nodes represent groups. An
edge connects users to the groups where they are a member. (k) APSMM conference: Left nodes represent scientists, and right nodes represent
editions of the APSMM conference. Edges connect scientists to the editions of the conference they have attended. (l) LVHK Meetup: Left
nodes represent persons, and right nodes represent events of the VegasHikers group on Meetup. Edges connect persons to those events they
have attended. (m) PGHF Meetup: Left nodes represent persons, and right nodes represent events of the Pittsburgh-free group on Meetup.
Edges connect persons to those events they have attended. (n) SIAM conference: Left nodes represent scientists, and right nodes represent
editions of the SIAM conference. Edges connect scientists to the editions of the conference they have attended. (o) NIPS conference: Left
nodes represent scientists, and right nodes represent editions of the NIPS conference. Edges connect scientists to the editions of the conference
they have attended. (p) UC Irvine forum: Left nodes represent users, and right nodes represent topics in the UC Irvine online forum. An
edge connects users to those topics where they have made a post. (q) Norwegian directors: Left nodes represent directors, and right nodes
represent Norwegian companies. Edges connect persons to the companies where they are member of the board of directors. (r) Virus-host
interactome: Left nodes represent virus proteins, and right nodes represent host proteins. An edge connects virus proteins to those host proteins
they interact with. (s) Scottish directors: Left nodes represent directors, and right nodes represent Scottish companies. Edges connect directors
to the companies where they are member of the board of directors. (t) Arroyo Goye pollinator-plant: Left nodes represent pollinators, and right
nodes represent plant species. An edge connects pollinators to the plants they pollinate. (u) Fonseca Ganade ant-plant: Left nodes represent ant
species, and right nodes represent plant species. Edges connect ant species to those plant species that they use as a source of food or housing.

for a node n is pn = pn

2 . Then the set of ergodic visit rates over
two steps is connected to the left and right visit rates by

P =
{

pu

2

∣∣∣∣pu ∈ PL

}
∪

{
pv

2

∣∣∣∣pv ∈ PR

}
. (A1)

Let M be a partition of the nodes into modules. The stan-
dard map equation calculates the code length of M as the
average of the module and index level code lengths, weighted
by the fraction of time a random walker uses each of the code

books,

L(M) = qH (Q) +
∑
m∈M

pmH (Pm). (A2)

Here, pm = qm + ∑
n∈m pn is the fraction of time the ran-

dom walker uses the code book for module m and n ∈ m
are the nodes in m, and qm is the entry and exit rate of
m; q = ∑

m∈M qm is the rate at which the index level code
book is used. Q = {qm | m ∈ M} is the set of module entry
rates, Pm = {qm} ∪ {pn | n ∈ m} is the set of node visit rates
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in module m, including module exit, and H is the Shannon
entropy. Note than entry and exit rates are identical since the
network is undirected.

Let M1 be a one-level partition with all nodes in the same
module. Then the code length according to the standard map
equation is

L(M1) = H (P ) = −
∑
pn∈P

pn log2 pn = −
∑
pn∈P

pn(log2 2pn − 1) = −
∑
pn∈P

pn log2 2pn +
∑
pn∈P

pn

= 1 − 1

2

∑
pn∈P

2pn log2 2pn
A1= 1 − 1

2

∑
pu∈PL

pu log2 pu − 1

2

∑
pv∈PR

pv log2 pv = 1 + 1

2
H (PL ) + 1

2
H (PR). (A3)

To generalize, we plug Eq. (A3) into Eq. (A2),

L(M) = q

(
1 + 1

2
H (QL ) + 1

2
H (QR)

)
+

∑
m∈M

pm

(
1 + 1

2
H

(
PL

m

) + 1

2
H

(
PR

m

))
. (A4)

Here, QL = {qL
m | m ∈ M} and QR = {qR

m | m ∈ M} are the sets of left and right module entry rates; PL
m = {qL

m} ∪ {pu | u ∈ mL}
and PR

m = {qR
m} ∪ {pv | v ∈ mR} are the sets of left and right node visit rates in module m, including module exits. Further, mL

and mR are the subsets of left and right nodes in m.
Based on Eq. (A4), we define the bipartite map equation,

LB(M) = qLH (QL ) +
∑
m∈M

pL
mH

(
PL

m

) + qRH (QR) +
∑
m∈M

pR
mH

(
PR

m

)
. (A5)

Here, qL = ∑
m∈M qL

m and qR = ∑
m∈M qR

m are the usage rates for left-to-right and right-to-left code books at index level; and
pL

m = qL
m + ∑

u∈mL pu and pR
m = qR

m + ∑
v∈mR pv are the usage rates for left-to-right and right-to-left code books at module level,

respectively. As the total weight of edges incident to left nodes is equal to the total weight of edges incident to right nodes, we
have qL = qR = q

2 and pL
m = pR

m = pm
2 for all m.

Consider again P , the set of ergodic node visit rates over two steps and let α ∈ [0, 1] ⊂ R. For better readability and because
specific nodes are not important, we refer to the visit rates over two steps simply as p in the following. Further, we use Hα =
H (1 − α, α) as shorthand for the entropy of α. We can then rewrite H (P ),

H (P ) = −
∑
p∈P

p log2 p

= [(1 − α) + α]

⎛
⎝−

∑
p∈P

p log2 p

⎞
⎠

= (1 − α)

⎛
⎝−

∑
p∈P

p log2 p

⎞
⎠ + α

⎛
⎝−

∑
p∈P

p log2 p

⎞
⎠

= −
∑
p∈P

[(1 − α)p] log2 p −
∑
p∈P

αp log2 p

= −
∑
p∈P

[(1 − α)p] log2
(1 − α)p

1 − α
−

∑
p∈P

αp log2
αp

α

= −
⎧⎨
⎩

∑
p∈P

[(1 − α)p] log2 [(1 − α)p] − [(1 − α)p] log2 (1 − α)

⎫⎬
⎭ −

⎛
⎝∑

p∈P
αp log2 αp − αp log2 α

⎞
⎠

= −
∑
p∈P

[(1 − α)p] log2 [(1 − α)p] +
∑
p∈P

[(1 − α)p] log2 (1 − α) −
∑
p∈P

αp log2 αp +
∑
p∈P

αp log2 α

= (1 − α) log2 (1 − α) + α log2 α −
∑
p∈P

[(1 − α)p] log2 [(1 − α)p] −
∑
p∈P

αp log2 αp

= −Hα −
∑
p∈P

[(1 − α)p] log2 [(1 − α)p] −
∑
p∈P

αp log2 αp (A6)
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With Eqs. (A3) and (A6), we rewrite the code length of the one-level partition,

L(M1) = H (P )
A3= 1 + 1

2
H (PL ) + 1

2
H (PR)

A6= 1 + 1

2

⎧⎨
⎩−Hα −

∑
pu∈PL

[(1 − α)pu] log2 [(1 − α)pu] −
∑

pu∈PL

αpu log2 αpu

⎫⎬
⎭

+ 1

2

⎧⎨
⎩−Hα −

∑
pv∈PR

[(1 − α)pv] log2 [(1 − α)pv] −
∑

pv∈PR

αpv log2 αpv

⎫⎬
⎭

= 1 − Hα + 1

2

⎧⎨
⎩−

∑
pu∈PL

[(1 − α)pu] log2 [(1 − α)pu] −
∑

pv∈PR

αpv log2 αpv

⎫⎬
⎭

+ 1

2

⎧⎨
⎩−

∑
pv∈PR

[(1 − α)pv] log2 [(1 − α)pv] −
∑

pu∈PL

αpu log2 αpu

⎫⎬
⎭

= 1 − Hα + 1

2
H (Rα ) + 1

2
H (R1−α ), (A7)

where we define mixed node visit rates,

Rα = {(1 − α)pu | pu ∈ PL} ∪ {αpv | pv ∈ PR}. (A8)

For values of α = 0, α = 1, and α = 1
2 , we retrieve the original definitions of PL, PR, and P , respectively, from Eq. (8). Again,

to generalize, we plug Eq. (A7) into Eq. (A8),

L(M) = q

(
1 − Hα + 1

2
H (Rα ) + 1

2
H (R1−α )

)
+

∑
m∈M

pm

(
1 − Hα + 1

2
H

(
Rα

m

) + 1

2
H

(
R1−α

m

))
, (A9)

where Rα = {(1 − α)qL
m | m ∈ M} ∪ {αqR

m | m ∈ M} is the set of mixed module entry rates and Rα
m is the set of mixed node visit

rates in module m, as defined in Eq. (A8).
Based on Eq. (A9), we define a first version of the bipartite map equation with varying node-type memory,

Lα (M) = q

2
[H (Rα ) + H (R1−α )] +

∑
m∈M

pm

2

[
H

(
Rα

m

) + H
(
R1−α

m

)]
. (A10)

Finally, we assume that node types are fuzzy and are flipped at rate α. A node that is in fact a left node appears to be a
right node an α fraction of the time. Similarly, a right node appears to be a left node an α fraction of the time. This means that,
on average, node types are mixed and have both left and right components. We model this with pairs: Left nodes u with visit
rate pu ∈ PL have a mixed visit rate pα

u = [(1 − α)pu, αpu], and right nodes v with visit rate pv ∈ PR have a mixed visit rate
pα

v = [αpv, (1 − α)pv].
Using mixed node visit rates, we refine our earlier definition from Eq. (A8) and combine Rα and R1−α ,

Pα = {[(1 − α)pu, αpu]| pu ∈ PL} ∪ {[αpv, (1 − α)pv]| pv ∈ PR}. (A11)

Further, all code-book usage rates become pairs, qα =∑
m∈M qα

m and pα
m = qα

m + ∑
u∈mL pα

u + ∑
v∈mR pα

v , where qα
m

is the mixed module entry and exit rate of m and addition
works component-wise. Since the network is bipartite and
random walks alternate between left and right nodes, we have
qα = ( q

2 ,
q
2 ) and pα

m = ( pm
2 ,

pm
2 ).

Combining Eqs. (A8)–(A11), we define the bipartite map
equation with varying node-type memory,

Lα (M ) = qαH (Qα ) +
∑
m∈M

pα
mH

(
Pα

m

)
, (A12)

where Qα = {qα
m | m ∈ M} is the set of mixed module entry

rates and Pα
m = {qα

m} ∪ {pα
u | u ∈ mL} ∪ {pα

v | v ∈ mR} is the

set of mixed node visit rates in module m, including module
exits.

APPENDIX B: COMMUNITY LANDSCAPES

This Appendix contains short descriptions of all used net-
works and plots with the results from our analyses. The solid
and dashed blue lines show the extra compression of the
best hierarchical and two-level partitions, respectively, and the
solid and dashed orange lines show the effective module size
of the best hierarchical and two-level partitions, respectively.
Where it was useful to reveal more details, we plotted the
effective module size on a logarithmic scale.
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