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Exploring the solution landscape enables more reliable network community detection
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To understand how a complex system is organized and functions, researchers often identify com-
munities in the system’s network of interactions. Because it is practically impossible to explore all
solutions to guarantee the best one, many community-detection algorithms rely on multiple stochas-
tic searches. But for a given combination of network and stochastic algorithm, how many searches
are sufficient to find a solution that is good enough? The standard approach is to pick a reason-
ably large number of searches and select the network partition with the highest quality or derive
a consensus solution based on all network partitions. However, if different partitions have similar
qualities such that the solution landscape is degenerate, the single best partition may miss relevant
information, and a consensus solution may blur complementary communities. Here we address this
degeneracy problem with coarse-grained descriptions of the solution landscape. We cluster network
partitions based on their similarity and suggest an approach to determine the minimum number
of searches required to describe the solution landscape adequately. To make good use of all par-
titions, we also propose different ways to explore the solution landscape, including a significance
clustering procedure. We test these approaches on synthetic and real-world networks, and find that
different networks and algorithms require a different number of searches and that exploring the
coarse-grained solution landscape can reveal noteworthy complementary solutions and enable more
reliable community detection.

I. INTRODUCTION

Researchers in many disciplines across science use tools
from network science to understand the structure, dy-
namics, and function of complex systems. For example,
identifying possibly nested groups of densely connected
nodes with community detection algorithms can highlight
important network structures [1–3]. Most community
detection algorithms seek to find the network partition
that optimizes a quality score based on a specific defini-
tion of what constitutes a community. Because finding
the best network partition is an NP-hard problem, many
algorithms rely on stochastic search strategies and re-
quire multiple runs to avoid local minima with bad solu-
tions [4–6]. However, all algorithms are more or less sen-
sitive to degenerate solutions with similar quality scores
for dissimilar partitions [7]. Moreover, small changes in a
network due to noise can drastically change the best so-
lution, and a weak community structure can worsen this
degeneracy problem. Therefore, reliable community de-
tection must be able to successfully deal with degenerate
solutions.

To handle the degeneracy problem, consensus clus-
tering seeks to combine information from multiple net-
work partitions [8–10]. The aim is to summarize the
partitions in a single and possibly new partition with
graph-based, combinatorial, or statistical techniques.
Various approaches include finding the median parti-
tion or the one that shares the most information with
other partitions [8, 11], consolidating groups of parti-
tions with hypergraph methods [8], and re-clustering a
co-occurrence network with the same community detec-
tion algorithm–[9, 10]. Although consensus clustering
can alleviate some degeneracy problems and give higher

quality solutions, using a single consensus partition can
also waste important information or lead to misleading
solutions if the partitions are incompatible. Moreover,
disregarding the partition qualities can aggravate these
problems when the number of low-quality partitions out-
weighs the number of high-quality partitions (Fig. 1).
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FIG. 1. A schematic solution landscape projected into a
two-dimensional space with isolines for quality score. White
squares and black circles represent two network partition clus-
ters, with partitions distributed based on their partition dis-
tances. Large symbols represent cluster centers. A consensus
solution biased toward the numerous partitions marked with
a black circle may have a lower quality score than any of the
detected partitions.

Studying the full solution landscape with all network
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partitions and corresponding quality measures results in
no wasted information. However, such approaches are in
practice limited to approximate visual explorations and
the qualitative assessment of degenerate solutions [7, 12].
Moreover, for a given network and community detection
algorithm, it is unclear how many solutions are enough
to describe the solution landscape adequately. As a re-
sult, we lack quantitative approaches that both highlight
essential structures in the solution landscape and deter-
mine when it is safe to stop searching for new or bet-
ter solutions. These challenges call for novel methods to
comprehend and make use of the solution landscape to
better understand the structure and dynamics of complex
systems.

Here we present a partition clustering approach that
explores the solution landscape of standard and mul-
tilevel community detection algorithms. To assess the
completeness of the coarse-grained solution landscape,
we cluster similar partitions together with a fast stream-
clustering algorithm and estimate the probability that
new partitions will fall within already defined partition
clusters. For a coarse-grained solution landscape that
meets a user-specified resolution, we propose different
ways to explore the space of partitions, including visual
explorations to reveal complementary solutions and a sta-
tistical test to identify significant communities. We val-
idate our approach on synthetic networks as well as a
real-world network of worldwide mammal occurrences.

II. DESCRIBING THE SOLUTION

LANDSCAPE

A. Network partition distance

To describe the solution landscape, we first compute
distances between partitions. While any of the many
partition distance measures developed for different net-
works and research questions would work, most of them
apply only to hard partitions that cannot capture hi-
erarchical or overlapping community structures [13–15].
Because these types of community structures are com-
mon in many real-world networks [16–19], some distance
measures have been generalized to capture either overlap-
ping or hierarchical communities [16, 18, 20], but rarely
both [21]. To capture different types of community struc-
tures and make it easy to interpret the results, we want
a flexible and simple distance measure.

Because a community of nodes is the building block of
all types of community structures, we base the partition
distance measure on pairwise community comparisons,
regardless of whether they are in different hierarchical
levels or whether nodes belong to more than one com-
munity. Specifically, we measure the weighted average
of the minimum Jaccard distance over all communities
in partition P to a community in partition P ′, with the
weight given by the fraction of node assignments. That
is, for each community i in partition P with set of nodes

CP
i , we measure the minimum Jaccard distance to any

community j in partition P ′ with set of nodes CP ′

j , and
calculate the weighted average based on the number of
nodes in CP

i , |CP
i |, and the number of community assign-

ments in partition P ,
∑

k |C
P
k |, such that the distance

dPP ′ from partition P to partition P ′ is

dPP ′ =
∑

i

min
j

(

1−
CP

i ∩ CP ′

j

CP
i ∪ CP ′

j

)

|CP
i |

∑

k |C
P
k |

. (1)

Because dPP ′ need not be equal to dP ′P , we calculate the
average for a symmetric partition distance measure [22],

d̄PP ′ =
1

2
dPP ′ +

1

2
dP ′P . (2)

This partition distance works with hard, overlapping, and
hierarchical communities. It is zero for identical parti-
tions, and approaches 1 as they become completely dis-
similar. Between these extremes, the partition distance
gives the weighted average fraction of nodes that best-
matching communities do not have in common.

B. Network partition clustering algorithm

Using the proposed network partition distance, we de-
scribe the solution landscape with clusters of similar net-
work partitions. While many clustering algorithms can
output such clusters, those algorithms generally involve
NP-hard optimization problems in themselves. However,
to identify dissimilar partitions with high quality, we do
not need a solution landscape that optimizes some qual-
ity function. Instead, a fast and transparent determinis-
tic approach that decides the number of clusters provides
multiple advantages: First, a fast algorithm can run to-
gether with a stochastic community detection algorithm
and decide when it is safe to stop to achieve a good result.
Second, a deterministic algorithm that does not require
a prespecified number of clusters evades the ambiguities
that come with multiple solutions. Third, a transparent
algorithm that produces interpretable clusters and a com-
prehensible solution landscape simplifies further analysis.
Therefore, instead of relying on established clustering al-
gorithms developed for other purposes, given a partition
distance threshold dmax, we perform the following steps:

1. Order all p network partitions from highest to low-
est quality.

2. Let the highest quality network partition form clus-
ter center 1.

3. Repeat until all network partitions have been clus-
tered. Among the not yet clustered partitions, pick
the one with the highest quality and assign it to
the first of the m cluster centers that it is closer to
than dmax. If no such cluster center exists, let it
form cluster center m+ 1.
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For example, in the schematic solution landscape in
Fig. 1, the network partition clustering algorithm first
lets the partition marked with a big square form the cen-
ter of cluster 1. For an intermediate partition distance
threshold, it then assigns the other partitions marked
with squares to the same cluster before it lets the parti-
tion marked with a big circle form the center of cluster
2 and assigns the other partitions marked with circles to
that cluster.

The partition distance threshold specifies the resolu-
tion of the coarse-grained solution landscape. Lowering
the threshold gives more clusters with more similar net-
work partitions and increasing the threshold gives fewer
clusters with less similar network partitions.

We have implemented the partition clustering
code in C++, which has worst-case time-complexity
O(pm), and made it available for anyone to use at
https://github.com/mapequation/partition-validation

C. Solution landscape completeness

We say that a solution landscape is complete when new
network partitions at most marginally affect its coarse-
grained description. Accordingly, when a solution land-
scape is complete, it is safe to stop searching for better
network partitions. Intuitively, we need fewer partitions
to describe the solution landscape of a network with a
clear community structure than that of a network with a
diffuse community structure because the former will have
more similar partitions. Moreover, the required number
of partitions will also depend on the variability of the
search algorithm. In any case, for a sufficient number
of partitions, the probability that a new partition will
fit into existing clusters will be close to 1. We use this
probability as a validation score to assess the solution
landscape completeness. and to determine when to stop
searching. For example, we stop the search algorithm
when the validation score is higher than accuracy level
0.9. To avoid random effects caused by the search order
of the stochastic community detection algorithm, we use
repeated random sub-sampling validation and hold out
100 partitions, or p/2 when the number of partitions is
fewer than 200, to estimate the validation score.

D. Solution landscape exploration

A complete coarse-grained solution landscape with
clusters centered around locally high-quality partitions
simplifies further analysis and makes the results more re-
liable. First, it indicates when it is safe to stop searching
for a better solution because the accuracy level and parti-
tion distance threshold put a limit on the value of contin-
uing. For example, when a solution landscape is complete
at a high accuracy level for a small partition distance
threshold, summary statistics based on all partitions will
be reproducible and reliable. Second, it directly gives an

idea about the spread of network partitions through the
number of clusters for a given partition distance thresh-
old. For more detailed analysis, alluvial diagrams can
highlight qualitative pairwise differences between parti-
tions [23] and various embedding techniques can depict
the overall solution landscape [24]. Third, it can speed up
further analysis with controlled information loss as com-
paring all pairs of cluster centers rather than all pairs
of partitions reduces the computational complexity from
O(p2) to O(m2).

Useful further analysis include finding communities or
node assignments that are stable across many partitions.
For example, in networks with partially clear community
structure, distinguishing stable from unstable communi-
ties enables more reliable analysis. While approaches ex-
ist for assessing the significance of communities given a
set of partitions [23, 25], these approaches only work for
hard two-level partitions. Therefore, we propose an ap-
proach that also assesses the significance for hierarchical
or overlapping communities. A straightforward approach
to assessing the significance of a community would be to
calculate the fraction of partitions in which the commu-
nity appears. However, this significance test is overly
demanding as communities with only slight variations in
node composition would be considered non-significant.
Consequently, we relax the demand for exact matching
and reuse the minimum Jaccard distance of the network
partition distance in Eq. (1) with a threshold. We mea-
sure the significance αR

i of community i in the highest-
quality or other reference partition R as the fraction of
partitions that have a community with a smaller distance
to i than a threshold τ ,

αR
i =

1

p− 1

∑

P 6=R

Θ

[

τ −min
j

(

1−
CR

i ∩ CP
j

CR
i ∪ CP

j

)]

, (3)

where Θ is the Heaviside step function.

Stable communities can contain both stable and unsta-
ble node assignments, and we need a means to distinguish
between them. Therefore, to measure the community-
assignment significance ηRv of node v in reference parti-
tion R, we calculate the fraction of partitions in which v
appears in the community that is most similar to v’s com-
munity in the reference partition. Using the Kronecker
delta function δ, the community-assignment significance
can be written

ηRv =
1

p− 1

∑

P 6=R

δ
(

cPv , c
RP
v

)

, (4)

where cPv is the community index of node v in partition
P , and cRP

v = argmaxj C
R
cR
v

∩ CP
j /CR

cR
v

∪ CP
j is the com-

munity index of the community in partition P that is
most similar to the community of v in partition R.

https://github.com/mapequation/partition-validation
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III. RESULTS AND DISCUSSION

A. Solution landscape of synthetic networks

We tested our approach on LFR benchmark networks
with different intercommunity link probabilities µ [26].
We generated networks with 500 nodes, of average de-
gree 10 and maximum degree 20, with community sizes
distributed between 20 and 100 nodes, and with four dif-
ferent intercommunity link probabilities, µ = 0.1, 0.2,
0.3 and 0.4, for less and less pronounced communities.
To account for the internal variability of the LFR bench-
mark networks, we generated 25 synthetic networks for
each µ. We analyzed these networks with two popular
and contrasting stochastic algorithms for community de-
tection: Infomap [4, 27] and Bayesian inference of the
stochastic blockmodel (BSBM) as implemented in the
graph-tool library [6, 28]. While both algorithms opti-
mize information-theoretic objective functions, Infomap
seeks to compress dynamics on a network whereas BSBM
seeks to compress the network itself. Moreover, BSBM
can handle partition uncertainty based on sampling from
the posterior distribution [12], but the solution landscape
nevertheless contains useful information about the vari-
ability of the partitions. We ran each algorithm 500 times
on a given network in incremental steps of first 50 and
then 100 times. After each step, we ran the partition
clustering algorithm and validated 100 times on 100 sub-
sampled hold-out partitions when p ≥ 200 and on p/2
partitions otherwise.

The benchmark tests show that Infomap tends to gen-
erate simpler landscapes than BSBM. That is, for the
synthetic networks, Infomap requires fewer partitions to
obtain complete solution landscapes. Nevertheless, both
methods require more partitions for networks with higher
intercommunity link probabilities (Fig. 2). Thus, a less
pronounced community structure requires a larger num-
ber of searches to obtain a complete solution landscape.
The choice of partition distance threshold dmax also influ-
ences the required number of searches. To exemplify this,
we used two threshold values for validation, dmax = 0.025
and dmax = 0.05. With the higher threshold, more hold-
out partitions fit in clusters such that the validation score
increases (Fig. 2). Therefore, the choice of partition dis-
tance threshold should reflect a compromise between ac-
curacy and efficiency and depend on the particular prob-
lem at hand.

B. Solution landscape of a mammal occurrence

network

We further explored the solution landscape in a real-
world case using a terrestrial mammal occurrence net-
work. This bipartite network consists of 4999 mam-
mal species and 10775 grid cells of 1 degree that cover
the surface of the Earth [29]. A link exists between a
species and a grid cell if the species occurs in the grid
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FIG. 2. Infomap and BSBM solution landscape completeness
for synthetic networks generated with four intercommunity
link probabilities µ. The validation scores with solid medians
and shaded regions between the 25th and 75th quantiles for
different numbers of partitions with partition distance thresh-
olds dmax = 0.025 and dmax = 0.05. Infomap requires fewer
partitions than BSMB for complete solution landscapes. Both
methods require more partitions for less pronounced commu-
nities.

cell. The resulting communities form global-scale areas
that share similar species called bioregions. We analyzed
the community structure with the multilevel versions of
Infomap [17] and BSBM [30] by generating 1500 parti-
tions with each algorithm. We chose dmax = 0.2, which
roughly corresponds to partition differences that cover up
to 20% of the Earth’s surface. Higher partition distances
indicate major changes in the bioregional configuration,
which require separate examination. Nevertheless, to il-
lustrate the effect of different thresholds, we also used
three smaller values, dmax = 0.025, 0.05, and 0.1. To
validate the solution landscape under different numbers
of runs, we used 200–1500 partitions with 100 hold-out
partitions sub-sampled 100 times.

The results on the real networks resemble those on
the synthetic networks. Compared with Infomap, BSBM
again generated partitions with higher variability and a
more complex solution landscape. Because the distance
was higher than dmax = 0.2 between each pair of parti-
tions, each partition formed its own cluster such that the
validation score was 0. Therefore, we only explored the
results of Infomap, for which we achieved complete so-
lution landscapes with validation scores above 0.9 for all
tested threshold values dmax (Fig. 3). For example, for
the lowest tested dmax = 0.025, the validation score was
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FIG. 3. Validation score for landscape completeness of the
terrestrial mammal occurrence network under four partition
distance threshold values Jmax (0.2, 0.1, 0.05, 0.025).

higher than 0.9 when we used more than 900 partitions,
which formed 188 clusters (Fig. 3). In contrast, for the
highest tested dmax = 0.2, the validation score was higher
than 0.9 already at 200 partitions (and likely before), and
the 1500 partitions formed two clusters with 970 and 530
partitions, respectively. The cluster centers have similar
qualities, 10.689 and 10.695, which Infomap measures as
code lengths in bits. Indeed, the clusters have partitions
with overlapping code lengths (from 10.695 and 10.697
at the 25th percentile to 10.700 for both clusters at the
75th percentile), which call for further analysis of the
degenerate solution landscape.

To explore the qualitative differences between the clus-
ters, techniques such as alluvial diagrams can give a vi-
sual overview of major changes between the cluster cen-
ters (Fig. 4(a)). In our particular case, however, we can
visualize the geographic projection of the spatially ex-
plicit grid cells (Fig. 4(b)). At the highest hierarchical
level, the major difference is that the second cluster cen-
ter splits Africa and a southeastern portion of Asia from
a large region that encompasses Eurasia and Africa in the
first cluster center. At lower hierarchical levels, the first
cluster center further subdivides the North American re-
gion whereas the second cluster center further subdivides
regions in Africa and central Asia. These results show the
rich information contained in different partitions, which
can reveal meaningful patterns. For instance, the subdi-
vision of Sub-Saharan Africa closely coincides with the
Köppen climate classification [31].

Finally, we applied the significance clustering proce-
dure both at the community and node level with the over-
all highest quality partition as a reference. We used com-
munity distance threshold τ = 0.2 to calculate the com-
munity significance αR

i . The community significance is
largely in agreement with the previous qualitative visual

assessment. The region including Africa and Eurasia is
weakly supported, which is also true for the North Amer-
ican and Central Asian regions (Fig. 5). Also, the node
significance ηAi agrees with these results, but provides
further information. For instance, the weakly supported
African Euro-Asiatic region in the first level appears to
hold a significant core of nodes coinciding with northern
Eurasia. Moreover, nodes with low significance tend to
be placed along regional borders such as the Sahel border
and the border separating southern and northern South
America. Beyond methodological stochasticity, this re-
sult shows that some nodes are inherently more difficult
to assign to particular communities.

IV. CONCLUSIONS

We have introduced a fast network partition clustering
algorithm to describe the often degenerate solution land-
scape of stochastic community detection algorithms in
coarse-grained form. Our approach establishes a criterion
for when it is safe to stop searching for better solutions
and start exploring the solution landscape. We further
illustrate with visualizations of new statistical tests of
communities and node assignments, which give insights
into the underlying causes of the solution landscape de-
generacy. The validation on real-world as well as syn-
thetic networks highlights how focusing on a single net-
work partition can waste useful information. In contrast,
using the entire solution landscape enables more reliable
community detection and a better understanding of the
organization of complex systems. Beyond community de-
tection, our approach works with any stochastic search
with outputs that have measurable distances.
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FIG. 4. World bioregions from communities in the two best partition cluster centers.(a) Alluvial diagram showing the differences
between the two partitions at the highest hierarchical level. (b) Geographic projection of nodes representing grid cells. In all
cases, we obtained three hierarchical levels. The differences show the rich information contained in separate partitions, even
when they have similar quality.
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Euro-Asiatic region in the first level appears to hold a significant core of nodes coinciding with the north of Eurasia, while less
significant nodes tend to be placed along bioregional borders. The striped areas correspond to regions that were not further
subdivided in the third hierarchical level.



7

[1] D. Deritei, W. C. Aird, M. Ercsey-Ravasz, and E. R.
Regan, Scientific reports 6, 21957 (2016).

[2] C. Y. Baldwin and K. B. Clark, Managing in the modular
age: Architectures, networks, and organizations 149, 84
(2003).

[3] J. Grilli, T. Rogers, and S. Allesina, Nature communi-
cations 7 (2016).

[4] M. Rosvall and C. T. Bergstrom, Proceedings of the Na-
tional Academy of Sciences 105, 1118 (2008).

[5] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and
E. Lefebvre, Journal of statistical mechanics: theory and
experiment 2008, P10008 (2008).

[6] T. P. Peixoto, Physical Review E 89, 012804 (2014).
[7] B. H. Good, Y.-A. de Montjoye, and A. Clauset, Physical

Review E 81, 046106 (2010).
[8] A. Strehl and J. Ghosh, Journal of machine learning re-

search 3, 583 (2002).
[9] A. Lancichinetti and S. Fortunato, Scientific reports 2,

336 (2012).
[10] A. Tandon, A. Albeshri, V. Thayananthan, W. Alhalabi,

and S. Fortunato, Phys. Rev. E 99, 042301 (2019).
[11] A. Topchy, A. K. Jain, and W. Punch, IEEE transactions

on pattern analysis and machine intelligence 27, 1866
(2005).

[12] T. P. Peixoto, arXiv preprint arXiv:1705.10225 (2017).
[13] L. Danon, A. Diaz-Guilera, J. Duch, and A. Arenas,

Journal of Statistical Mechanics: Theory and Experi-
ment 2005, P09008 (2005).

[14] L. Hubert and P. Arabie, Journal of classification 2, 193
(1985).

[15] W. M. Rand, Journal of the American Statistical associ-
ation 66, 846 (1971).

[16] A. Lancichinetti, S. Fortunato, and J. Kertész, New
Journal of Physics 11, 033015 (2009).

[17] M. Rosvall and C. T. Bergstrom, PloS one 6, e18209
(2011).

[18] J. I. Perotti, C. J. Tessone, and G. Caldarelli, Physical
Review E 92, 062825 (2015).

[19] G. Palla, I. Derényi, I. Farkas, and T. Vicsek, Nature
435, 814 (2005).

[20] L. M. Collins and C. W. Dent, Multivariate Behavioral
Research 23, 231 (1988).

[21] A. J. Gates, I. B. Wood, W. P. Hetrick, and Y.-Y. Ahn,
arXiv preprint arXiv:1706.06136 (2017).

[22] M. K. Goldberg, M. Hayvanovych, and M. Magdon-
Ismail, in Social Computing (SocialCom), 2010 IEEE
Second International Conference on (IEEE, 2010) pp.
303–308.

[23] M. Rosvall and C. T. Bergstrom, PloS one 5, e8694
(2010).

[24] L. v. d. Maaten and G. Hinton, Journal of machine learn-
ing research 9, 2579 (2008).

[25] B. Karrer, E. Levina, and M. E. Newman, Physical re-
view E 77, 046119 (2008).

[26] A. Lancichinetti, S. Fortunato, and F. Radicchi, Physical
review E 78, 046110 (2008).

[27] D. Edler and M. Rosvall, The Infomap Software Package
(2019).

[28] T. P. Peixoto, The Infomap Software Package (2014).
[29] R. Bernardo-Madrid, J. Calatayud, M. González-Suarez,

M. Rosvall, P. M. Lucas, M. Rueda, A. Antonelli, and
E. Revilla, Ecology Letters (2019).

[30] T. P. Peixoto, Physical Review X 4, 011047 (2014).
[31] M. Kottek, J. Grieser, C. Beck, B. Rudolf, and F. Rubel,

Meteorologische Zeitschrift 15, 259 (2006) .

http://dx.doi.org/ 10.1103/PhysRevE.99.042301
http://arxiv.org/abs/1705.10225
http://arxiv.org/abs/1706.06136
https://www.mapequation.org
https://graph-tool.skewed.de

